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Abstract

This research developed and implemented an automated technique for translating informal

specifications into formal, executable specifications. A Unified Abstract Model (UAM) was de-

veloped to combine the information contained in Entity Relationship, State Transition, and Data

Flow Models into a concise, object-based representation. The UAM forms the basis for defining

a formal language, the Object Modeling Language (OML), used to capture the information con-

tained in the UAM, and therefore ERMs, DFMs, and STMs. By using OML, we were able to

develop an automated translation process to convert informal specifications into executable, formal

specifications. The Software Refinery Development Environment enabled us to easily develop a

parser that translates an OML specification into an abstract syntax tree. A Translation Executive

transforms the information contained in the abstract syntax tree into an executable, REFINE spec-

ification. By testing the behavior of the executable specification, the specifier can quickly validate

the correctness of the informal specification. Additionally, the automatically generated executable

specification serves as a basis for formal software design and future development. Two examples,

a home heating system and a library database, were used to validate this formalization and trans-

formation process. Our results clearly show the complementary nature of informal and formal

methods, and provides a significant step towards formalizing the software development process.
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Formalization and Transformation of Informal Analysis Models

Into Executable REFINETM Specifications

I. Introduction

1.1 Background

The elicitation and specification of software requirements is critical to the successful devel-

opment of a software system. It is crucial that the user's needs and problems be well understood,

analyzed, and properly documented in requirement specifications. Requirement errors can lead

to a system that is over budget, behind schedule, and one that does not meet the user's needs

(9:27). Primarily, software requirements are informally specified via natural language documents

(i.e., English text) (7:2) and graphical models (e.g., software analysis models - data flow, entity

relationship, state transition, etc.).

A study on software projects conducted by Boehm, concluded that 54% of all software project

errors are not discovered until after the coding and unit testing stages. Furthermore, of these errors,

45% are directly attributable to errors in the requirements and design stages (9:24). DeMarco

also performed a study of software errors and reported that 56% of all errors detected during a

program originate during the requirements and design phases (9:24). These two independent studies

underscore the importance of the requirements specification process. Not only are more than 50%

of all software errors made during the early stages of requirements specification and design, but

they also are not being discovered until late in the software lifecycle. This late discovery of software

problems directly contributes to the sky-rocketing costs of software systems. Table 1 taken from

Davis' textbook (9:23) shows the relative cost of fixing an error during the various stages of the

software lifecycle. In this table, the repair costs are relative to the cost of detecting and fixing an



Stage Relative Cost of Repair

Requirements 0.1 - 0.2

Design 0.5

Coding 1

Unit test 2

Acceptance test 5

Maintenance 20

Table 1. Cost to Repair Software Errors at Various Stages in Life-cycle (9:23)

error in the coding phase. Clearly, a great deal of money and time could be saved by discovering

requirement errors during the requirements stage.

There are several factors that contribute to requirements errors. Figure 1, also taken from

Davis' text, illustrates the distribution and types of errors made during the requirements stage

for the Navy's A-7E aircraft program. As seen in Figure 1, incorrect requirements are responsible

for nearly 50% of all requirement errors. These errors frequently occur when the specifier does

not correctly understand the user's problem, or when users do not correctly understand their

own requirements and thus do not convey them correctly to the specifier. The second highest

cause of requirement errors is simply the omission of necessary requirements. Here, the specifier

either captures only part of a requirement or does not capture any of the requirement in the

specification. This can also be attributed to users not knowing their need for a requirement.

Inconsistent requirements are the next most prevalent type of errors. These occur when two or

more requirements specify conflicting information. Ambiguous requirements are also responsible

for requirements errors. Here, the requirements may correctly specify the user's needs, but because

of difficulties in clearly stating complex requirements in natural language, and because of diversity

in reader backgrounds, these informal specifications are often misinterpreted from the user's original

intentions. Lastly, misplaced requirements are also responsible for requirement errors. These errors

2
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Figure 1. Distribution of Requirements Errors by Type (9:26)

are a result of necessary requirements being associated with the functionality of the wrong system

components in the specification. Unfortunately, these requirement errors are often not discovered

until late in development (e.g., testing) at which point (as illustrated in Table 1) they are very

expensive and time consuming to correct.

In spite of these shortcomings of requirement specifications, informal specifications remain

the most widely used method for specifying software system requirements. Informal specifications

have several key strengths. Since informal specifications are English-like in nature and use graphical

techniques, they:

3



"* are easy to learn and understand,

"* provide an ideal mechanism for eliciting requirements, and

"* communicate the specifier's understanding of requirements back to the user. (13, 27)

As previously stated, however, informal specifications can be imprecise and ambiguous.

Formal specifications are another method for specifying software requirements that are gaining

in popularity and respect. Formal specifications are mathematically based and possess a formal

notation to model system requirements. Their mathematical nature and formal notation provide

the following strengths:

"* requirements are concisely and precisely specified,

"* requirements are clear and unambiguous, and

"* specifications are suitable for mathematical analysis. (13, 27)

Clearly, formal specifications can be used to improve the accuracy of the requirements spec-

ification process. However, formal specifications also have their weaknesses. Formal specifications

are mathematically complex and require a high degree of mathematical competence. Consequently,

they are difficult to learn and understand. Furthermore, because of their complexity, they are not

a good mechanism for communicating with the user. Thus, formal specifications by themselves are

not entirely sufficient for specifying a software system.

The overall objective of this thesis was to develop a methodology for bridging the gap be-

tween informal and formal specifications to capitalize on their respective strengths. Frequently,

the two methods are viewed as competing techniques where only one method or the other can be

used. In examining their respective strengths and weaknesses, however, it is clear the two methods

are complementary in nature. Informal specifications are effective for eliciting requirements and

communicating with users while mathematically based, executable formal specifications provide

a method for resolving requirement misinterpretation, validating requirement specifications, and

4



serving as a basis for automated code generation. This thesis focuses on formalizing informal spec-

ification methods by using a formal language to capture informal requirements and to serve as a

basis for automated translation into an executable formal specification. By converting an informal

specification into an executable form, we can validate the behavior of the informal specification to

uncover and correct requirement errors very early in the software lifecycle.

1.2 Problem

Informal specification techniques consist of textual documents and graphical models that

describe the information content and behavior of a software system. Diagrams are useful for

expressing the most abstract views in informal specifications. They allow people to understand and

communicate easily about large complex ideas. (29) However, even when diagrams are decomposed

to show greater amounts of detail, they still must be supplemented with text to expand on abstract

ideas. If written in a natural language, these textual specifications can be ambiguous.

Natural languages are extremely expressive and are often used to provide detailed descrip-

tions needed for system specifications. However, these languages are not precise enough to ensure

a unique meaning for each description. Specifications can also be misinterpreted because of the

reader's or author's frame of reference. Natural language allows the specifier to make inappropriate

associations between requirements and implementation-specific details. These actions should be

reserved for the design stage. Also, an individual reading a natural language specification may

develop an understanding of the problem in terms of his previous experience. The intent of the

specification is corrupted because it has not communicated the correct information. The specifi-

cation has failed its purpose of being an initial system description. Like blueprints and schematic

diagrams, software specifications should provide a true representation of the planned system.

Even if a formal technique is used to concretely express software specifications, verifying the

specification's correctness and completeness is still a problem. If the technique is manual, verifi-

5



cation can be accomplished by extensive examination and cross-referencing. This will ensure the

specified system completely captures all stated requirements and is consistent with itself. Cor-

rectness can be assessed by performing partial mathematical verifications. This process is very

time-consuming and does not guarantee perfect program operation unless each verified segment is

totally independent (highly unlikely) or all dependencies have been accounted for in the verifications

(12).

Therefore, neither informal specification nor manual formal specification techniques can guar-

antee that the specified system will completely or partially meet the user's expectations. However,

one way of allowing the user to test whether the specification meets his expectations is to employ

an automated system that allows the specifier and user to execute the specification (2).

A mathematically based specification can reduce a set of requirements to data items (objects)

and their relationships. System behavior can be represented by using pre- and post-conditions,

decision tables, or program design language. Use of a formal specification language, rather than

English, can reduce the specifier's opportunities to introduce inconsistencies and ambiguities into

the specification and to influence the specification toward a specific design or platform. An ideal

formal specification captures all the detail of its informal counterpart, minimizes the chance of

misinterpretation or ambiguity, and only specifies "what" must be accomplished and not "how"

something is to be accomplished. A method for transforming the information contained in informal

modeling techniques into formal executable specifications is needed to improve the developer's

ability to build the correct product. Figure 2 depicts one way of accomplishing this transformation.

This diagram is useful in visualizing the objectives of this thesis.

The objectives of our research were:

1. To establish a minimal set of constructs that represent the content and behavior of informal

analysis models, specifically Entity Relationship Models (ERM), Data Flow Models (DFM),

and State Transition Models (STM).

6
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Automated
Translation
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Automated
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Figure 2. Informal to Formal Translation Effort

2. To develop a methodology for translating the information contained in these informal models

into a formal, object-based language.

3. To develop a tool to translate formal, object-based specifications into an executable environ-

ment.

4. To validate the process of translating informal specifications into formal, executable specifi-

cations.

The REFINE Software Development Environment, developed by Reasoning Systems Inc., served

as our executable environment. It is composed of a user interface, the REFINE language, and a

7



set of software development tools. The REFINE language, or simply REFINE, is a wide spectrum

language that uses abstract constructs such as set theory, logic, transformation rules, and pattern

matching. Since REFINE is an executable language and enables specifications to be expressed at

any desired level of abstraction, it supports the development of executable specifications. The

REFINE environment can also manipulate specifications to revise requirement specifications and

initiate program development using a program transformation approach. (22:1-2)

Problem Statement

To transform the information contained in informal software specifications into a mathemat-

ically based, executable formal specification that can be used to verify anticipated system

behavior and can serve as a basis for formal software derivation.

1.3 Scope

The primary goal of this thesis was to develop an automated process for transforming an

informal requirements model, specified in an object-based language, into an executable formal

specification modeled in the REFINE object-base. Since process and state behaviors can vary

widely, they were represented as one or more of the following: Program Design Language (PDL),

decision tables, or pre- and post-conditions. A subset of the Ada Language was used as the PDL

standard for this research.

Figure 2 distinguishes two major steps for automatically translating the information repre-

sented by informal analysis models into executable REFINE specifications. Due to time constraints,

we manually translated the information contained in informal analysis models into our object-based

language. However, the methodology used to model the information in the object language, along

with the object language's formal structure, should easily enable future automated translation.

Automating this process will be accomplished in future research. An automated process was devel-

oped, however, to transform the object-based language representation of an informal specification

8



into a REFINE executable specification. Validation of this transformation was accomplished through

test case generation and inspection.

1.4 Assumptions

This thesis was an extension of research conducted by two previous Air Force Institute of

Technology (AFIT) students. Capt Randall Lee Douglass' thesis objective was to

Determine the feasibility of developing an automated mechanism that transforms a
given SADT requirement analysis specification into an equivalent REFINE specification
(10:4).

His results demonstrated that a manual transformation is possible between SADT specifications

and their corresponding representation in REFINE. After analyzing his code, reviewing his report,

and executing his test cases, it was logical to assume his transformations were correct and thus

could be used as a basis for assisting in our automatic transformation. Capt Don Blankenship

researched the manual transformation of several other analysis models, such as Data Flow Models

(DFM), Entity Relationship Models (ERM), and State Transition Models (STM), into REFINE (6).

His efforts also demonstrated that informal models can be accurately represented in REFINE. This,

too, provided strong indications that an automated transformation from informal specification

models into REFINE was feasible. While Douglass' and Blankenship's research both proved the

value of developing executable REFINE specifications, neither effort focused on automating the

process of translating informal specifications into formal specifications.

1.5 Approach

The following approach was used to reach the objectives of this thesis.

1. Conduct a literature search of currently available specification languages.

2. Analyze the information modeled by ERMs, STMs, and DFMs.

9



3. Develop a Unified Abstract Model (UAM) capable of modeling information contained in the

aforementioned informal analysis models

4. Select a requirements specification language to support the UAM

5. Develop a process for converting the requirements language into a REFINE Abstract Syntax

Tree (AST)

6. Manipulate the AST to simulate behavior of the specification and/or develop equivalent

REFINE source code.

First, a detailed literature search was conducted to identify object-based languages capable

of capturing the information modeled by ERMs, DFMs, and STMs. We believe that object-based

languages are better suited for accurately modeling real-world problems, they promote a better

description of what is required as opposed to how to meet a requirement, and they are more main-

tainable than functional or algebraic languages (23:ix). Representing informal models in a formal

object-based specification language provided a basis for the development of an automated trans-

formation method between the informal model and its equivalent, executable REFINE specification.

Requirements analysis is still performed using informal techniques, but as a final step, all docu-

ments and diagrams are mapped into the syntax of the object-based requirements language. The

object-based language sets the stage for automatic translation into the REFINE Language for be-

havioral analysis, and assists in clarifying any misconceptions generated by natural language or

misinterpretation of diagrams. Chapter II presents the results of our literature review.

A study was then conducted to analyze the information modeled by entity relationship, state

transition, and data flow models. The purpose of this analysis was to clearly identify information

contained in each model, and to determine how the information from all three models could be

represented in one unified model. This analysis resulted in the development of the Unified Abstract

Model (UAM). Chapter III details the analysis of the informal models and describes the compo-

nents comprising the UAM. The UAM, therefore, defined the components which the object-based
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specification language had to be capable of representing. Once the UAM was defined, this enabled

us to more closely evaluate the specification languages discovered during the literature search.

Chapter IV presents a more extensive evaluation of the specification languages. The initial

literature search revealed two specification languages that appeared suitable for serving as our

object-based language. However, as discussed in Chapter IV, neither of these languages was com-

pletely suitable for supporting the UAM. As a result, we developed the Object Modeling Language

(OML) to fully support the UAM. OML has a formal syntax and is capable of modeling all infor-

mation contained in ERMs, STMs, and DFMs. The goals in developing OML, as well as its syntax

and semantics are fully described in Chapter IV. Because of OML's formal syntax, informal models

represented in OML are now in a format which is amenable to automatic translation. That is, a

compiler can be written to transform an OML specification into another language. In our case,

we developed a compiler to translate an OML specification into a REFINE executable specification.

By taking the information contained in an informal model and modeling it in OML, an executable

specification can be derived to simulate the behavior of the informal model.

Chapter V focuses on the transformation of an OML specification into a REFINE executable

specification. This was accomplished by a two-step process. First, the OML specification was

translated into a REFINE Abstract Syntax Tree (AST). This task was supported by developing a

compiler 'ising DIALECT, REFINE's compiler generation tool. The second step required us to develop

translation software to convert the information contained in the AST into a REFINE executable

specification. Two example problems were then used to test the ability of OML and the translation

software to convert an informal specification into a formal, executable specification.

In addition to the main text of this thesis, we have provided several appendices. The syntax

and semantics of OML are presented in Appendix A, as well as the domain model and grammar to

support its translation into a REFINE AST. Appendix B provides the same type of information for

our Ada PDL. Appendix C contains all of the translation software required to convert information
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contained in a REFINE AST into an executable specification. The next two appendices, Appendix D

and Appendix E, present two example problems that we implemented to test OML's ability to model

an informal specification, to validate the translation software, and to test the correctness of the

informal specification through its execution. Finally, Appendix F is a user's manual for using the

translation software to convert an OML specification into a REFINE specification.
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H. Literature Review

2.1 Introduction

The primary objectives of this literature search were:

1. to determine what characteristics a "good" object-based language should possess,

2. to select a specification language as a basis for an object language, and

3. to investigate current developments in transforming informal to formal specification tech-

niques.

There are many specification languages currently available to industry and academia, many

of which are tailored to specific domains. We have classified these languages into three broad

categories: object-based, algebraic, and miscellaneous. Most of the object-based languages have

some basis in first-order predicate logic and were most promising to this research. They model ideas

at high levels of abstraction allowing lower level details to be ignored. Many also include mechanisms

for supporting classification, inheritance, specialization, generalization, etc. that support object-

oriented development.

The algebraic group also has a basis in logic; however, they tend to be more functionally based

than the object-based languages. Concepts are built up in axiomatic detail from very fundamental

ideas, much as is done when developing an abstract data type. The high level of effort required

to generate an abstract idea in this manner detracts from the clarity of such specifications. The

larger the problem description, the greater this problem becomes.

The final group has been generalized as miscellaneous languages. These languages are inter-

esting from the viewpoint that organizations have customized languages from the first two groups

to develop specific solutions to real problems. This is this group's greatest weakness. Some lan-

guages reflect corporate views and ways of doing business. Others depict a specific development

technique that may not be broad enough to accomplish our objectives. Others are very much like
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third generation programming languages, encouraging the analyst to depart from describing what

and to include details of how the problem should be solved.

2.2 Review of Specification Languages

A primary consideration in investigating specification languages was their ability to describe

system characteristics, and to provide a logical basis for manipulation of the specification. T. H. Tse

(27) and Fraser et. al. (13), note several desirable characteristics of requirements specification

languages:

1. As a bridge between the user and the development environment, the language must be easy

to employ and easy to understand by the naive user.

2. Because it serves to clarify natural language specifications, it should have a limited, well-

defined syntax and semantics to describe data and technical requirements in a precise and

unambiguous manner.

3. It must be suitable for both the task and the parties involved in communication. (13:455)

4. To clarify the conceptual representation of complex ideas, the language must provide a means

to separate the logical and physical characteristics the specification describes, and provide a

hierarchical framework to organize those characterizations.

5. The resulting specification must be modifiable and maintainable to accommodate the iterative

process of requirements specification.

6. It should provide a descriptive mechanism and operators for transforming the system descrip-

tion from one format to another to suit different development situations.

7. Ideally, a language must support completeness, correctness, and consistency checks and proofs.

(27:145)
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Pamela Zave's article also provides guidance for selecting a specification language. Impor-

tant issues that she emphasizes are the language's ability to model functional and non-functional

requirements; the ability to support formal reasoning necessary for validation; the existence of a

well-defined set of steps to construct, validate, and implement specifications; and the language's

cost effectiveness. (30:212-213)

Greenspan highlights several modeling ideas he believes are essential to requirements modeling

languages:

"* The language must allow direct and natural modeling of the world. This is best accomplished

by using an object-oriented framework where ideas and entities of the world are described

using objects. Manipulation of these objects represents the behavior of the real world objects.

"* It should support the organization of large descriptions. The principle of abstraction, in

particular aggregation, classification, and generalization, is the primary tool for accomplishing

this goal.

"* It should allow the expression of assertions, entities, and activities. First-order logic is one

way of meeting this requirement.

"* It should uniformly use basic principles to make it easy to learn and use.

"* The language's features should be precisely defined. That is, it should be formal. A formal

language is based on a mathematical formalism such as first-order logic. This is necessary for

the language to be well understood, well structured, and consistent. (15:3-4)

A language's expressive power sets limits on one's ability to express and reason about ideas.

A language's syntax determines the ease with which a person can interpret information encoded in

the language and impacts the design of any tools that are built to support the language.
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2.2.1 Object-Based Languages.

1. RML. RML addresses most of the desired characteristics and capabilities of a requirements

language. RML combines knowledge-based representation concepts, object-oriented features

and capabilities similar to other requirements languages. RML is built on first-order predicate

logic. It has a well-defined grammar which simplifies translation from an informal to a formal

language. Abstraction principles for organizing objects include aggregation, classification, and

generalization. RML allows for three kinds of objects to represent real world concepts and

occurrences - entity, activity, and assertion. An entity object represents things in the world,

an activity object is the event that causes a change in the world, and an assertion object

reflects what is true in the world. An assertion object can also describe inputs, outputs,

controls, pre-conditions, post-conditions, invariants, and other properties. RML encourages

the abstraction of ideas and the use of domain modeling. Greenspan's dissertation contains

a complete description of RML's syntax and semantics. (15:11-26)

2. VDM. The Vienna Development Method (VDM) is a systematic approach to large-scale soft-

ware system development pioneered by Vienna Laboratory. The method was first envisioned

for the development of computer languages and their processors. However, the technique has

since been applied to other systems. VDM uses decomposition and correctness arguments

to specify the architecture of software systems. Abstraction is used to manage complexity.

Refinements are used to transform an initial formal specification into objects that can be

implemented. The method uses a language called Meta-IV to document its specifications.

Meta-IV is based on first-order predicate calculus with equality (19). This provides the lan-

guage with consistent, complete axiomatic definition and a set of mathematical notions that

are widely understood. It includes representations for, and basic operations on, sets, maps,

and tuples. It also has facilities for named and unnamed functions. Class structures are easily

defined and language constructs support inheritance, although inheritance is not specifically

16



addressed in the syntax. Meta-IV contains most of the concepts that have been incorpo-

rated into Z (pronounced "zed"), a set-theory based language used to develop functional

descriptions of computer systems, and Reasoning Systems' Software Refinery (25). Meta-IV

was designed to specify systems; it was never intended to be mechanized. (5) The REFINE

environment, however, implements the essential ideas of this language.

3. REFINE. The REFINE Software Development Environment is composed of a user interface,

the REFINE language, and a set of software development tools. The REFINE language, or

simply REFINE, is a wide spectrum language that provides an integrated treatment of set

theory, logic, transformation rules, and pattern matching. REFINE provides much freedom to

express specifications at any desired level of abstraction. (22:1-2) The specification's behavior

can be evaluated by executing it in the REFINE environment. The environment also contains

several valuablc tools. DIALECT is a language processing tool that can be used to define

grammars and read files written in the new languages into REFINE's object base. The Object

Browser is a menu-driven system used to examine the static structure of the object base.

INTERVISTA allows the analyst to develop graphical interfaces to REFINE. With REFINE, an

analyst is also able to convert specifications from procedural structures to object-oriented

implementations with minor modifications. This capability also allows the user to transform

abstract specifications to more program-like specifications to enable transformation into target

code.

4. Eiffel. Eiffel is an object-oriented programming language. It supports the ideas of class and

inheritance well and uses the idea of assertions to document correctness arguments such as

pre-conditions, post-conditions and invariants. (20:Appendices B-E) The language's structure

is well suited for specification with respect to implicit descriptions of the domain, but the

language would need to be extended to include concepts dealing with sets and maps.
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5. Spec. Spec was developed at the US Naval Postgraduate School to be used for large scale

development and to represent black-box specifications. Spec uses predicate logic to define

the behavior of a model independent of its internal structure. This structure is described

by modules, messages, events, and alarms. This language is different from the algebraic

languages in that it is built on conceptual models rather than theories and allows the user

to describe interfaces with exceptions, time dependencies, and state changes independent of

the target language. Modules respond when stimulated by a message. Actions are defined by

pre- and post-conditions and their associated concepts, which abstractly describe symbols in

the condition predicates and help decompose the specification into manageable chunks. Spec

syntax allows natural language and informal descriptions of concepts in addition to formal,

mathematically-based ones. Messages define all the inter-module communication in Spec

specifications. The receipt of a message is an event. Events describe the system's behavior

and relate a module, a message, and a time. Alarms are discrete points in time when events are

triggered and describe a temporal schedule if one is required. Spec supports time-referenced

distributed systems. It also supports inheritance of concepts to ensure uniform treatment

across the model. (4) Spec appears to provide a high degree of descriptiveness and structure

as well as the concepts that underlie object-oriented analysis.

6. Object-Oriented Structured Design. OOSD is under development by Interactive Develop-

ment Environments. Its notation exists in both graphical and textual forms. It is based on

ideas from structure charts, Booch notation for Ada packages, class hierarchy, inheritance

principles, and Hoare's monitors for concurrent programming. CASE support is being built

as an extension to the Software through Pictures environment. OOSD supports a variety of

design strategies. The only designs excluded are those with type or name conflicts, or with

unconnected structures. The notation supports language-independent architectural design.

Language-specific information contained in detailed designs must be represented as annota-
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tions; there are no OOSD features to represent them. (28) Only detailed examples of the

graphical notation were available.

2.2.2 Algebraic and Miscellaneous Languages.

1. PAISLey. PAISLey is an executable specification language best suited for specifying highly

concurrent, real time systems with timing constraints being the primary non-functional re-

quirements. It is based on the data flow methodology, and generates a built-in notion of

control from the calling and argument structure of the functions generated to represent DFM

processes. (30:214-216)

2. Algorithm Description Language. ADL is an object-oriented language containing several

features from Smalltalk and C++ while supporting standard third generation language fea-

tures such as flow control, arrays, and string manipulation. ADL syntax is much like Pascal,

contains no facilities for predicate logic, and does not have any built in functions for sets,

maps, or sequences. (8)

3. Larch. The Larch Project has developed a family of specification languages. Each speci-

fication is written using both the Larch interface language which is programming language

specific, and the Larch Shared Language which is common to all languages. These languages

are algebraic in nature and do not contain abstraction concepts. (16:24)

4. Problem Statement Language. PSL was developed at the University of Michigan as part

of the ISDOS project. Its semantics and syntax are based on the entity-relation approach.

PSL supports multi-level refinement very well, allowing systems to be specified hierarchically.

(27:146) However, the notions of pre- and post-conditions are not supported. Actions to be

performed are specified by defining a series of steps or actions. We believe that some form of

pre- and post-condition behavior description is necessary for encouraging the user to describe
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his behavior in terms of what must be accomplished as opposed to how it can be accomplished.

PSL's approach to describing behavior does not discourage the user from describing how.

5. EDDA. EDDA is an attempt to add mathematical formalism to SADT. Because it is based

on SADT, it cannot easily represent any other design methodology. EDDA has two forms:

G-EDDA, the standard graphical version of SADT, and S-EDDA, a textual language that

partially represents the graphical constructs. (27:146) From the example shown in (27),

interface definitions can be expressed very clearly, but process descriptions are non-existent.

6. Systematic Activity Modelling Method. SAMM was developed by Boeing Computer Services

Company. Like SADT, SAMM is a highly graphical representation method. It provides little

support for low-level textual system specification. Documents generated by SAMM consist of

graphical data descriptions showing the flow of information between processes, and process

descriptions itemizing input, output, and activity requirement conditions. Specifications built

with it can be analyzed using tree and graph theory. (27:148-149)

7. Higher Order Software. HOS is an automated version of AXES marketed by Higher Order

Software Inc.. It supports a functional life-cych model designed to support the entire de-

velopment process and generate a provably correct design. The language is formal and its

mathematical basis is thinly disguised from the user. (27:149)

8. Requirements Statement Language. RSL was developed by TRW Defense and Space Systems

Group. In its textual form, it expresses requirements in terms of elements, relationships,

attributes, and structures. RSL represents software by tracing the processing paths through

it. Although it supports hierarchical decomposition, only the most detailed consolidated view

appears in the final version of the documentation. (27:150)

Several other specification languages are also discussed in (14:Chapter 5). Because tiey were not

directly applicable to this research, they have not been included here.
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o Supported

Limited Support

Figure 3. Comparison of Specification Languages

2.2.3 Summary of Language Assets Figure 3 contains a summary of common language

features. Many languages were found to be lacking at least one attribute critical to this research;

others were somewhat suited to this research's objectives. These factors are discussed below.

2.2.3.1 Object-Based Languages. Several of the object-based languages were suitable.

9 RML encourages the abstraction of ideas and the use of domain modeling. Greenspan's

dissertation contains a complete description of RML's syntax and semantics and it was a

leading candidate for our selection of an object language. RML's main detracting feature was

the difficulty in learning its syntax.
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"* Meta-IV, VDM's object language, contains constructs that represent a wide range of math-

ematical and logical ideas. It was an interesting option; however, its lack of mechanization

and explicit inheritance capabilities made Meta-IV a less than optimal choice.

"* The REFINE environment implements the essential ideas of Meta-IV. It also provides a wide

range of automated transformation and inspection capabilities. It was a candidate for our

object language.

"* Eiffel's syntax could be parsed by DIALECT into REFINE'S object base for execution and

manipulation; however, it lacks representations for sets and maps. These extensions would

need to be added in order to use existing tools to construct an automated environment. Purely

as a language, it could be made suitable.

Other object-based languages were not as useful:

"* Spec appears to provide a high degree of descriptiveness and structure, and representations

for the concepts that underlie object-oriented analysis. The amount of informalism included

in Spec compounds the problem of translating informal representations into formal ones and

limited Spec's applicability to this research.

"* The textual version of OOSD doesn't seem as rich as the graphical version. The notation

has many valuable ideas; however, it is centered more on design specification rather than on

requirement specification. This is a detracting feature in that it encourages the analyst to

focus more on details and less on abstract domain representations.

2.2.3.2 Algebraic and Miscellaneous Languages. None of the languages discussed in

this category were useful. The summaries below focus on what we considered to be major flaws

but are not comprehensive descriptions.
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"* ADL contains no facilities for predicate logic and does not have any built-in functions for

sets, maps, or sequences. It cannot rapidly prototype the behavior of requirements without

implying design decisions.

"* PAISLey is based on data flow models, largely ignoring ERMs and STMs. It was insufficient

because we needed to model all three types of informal models.

"* The Larch family of specification languages is algebraic in nature and does not contain ab-

straction concepts.

"* PSL is based on an entity-relationship approach and is too limited and too specific to be used.

"* EDDA only supports the SADT methodology and is too limited in scope to be useful in our

research.

"* SAMM lacks the semantic richness of definition needed to specify systems in the manner we

intended.

"* The ideas that HOS uses to generate a correct design may have been usable, but its reliance on

sets of mathematical axioms and its focus on functional decomposition reduced its usefulness

here.

"* RSL does not support the object-oriented concepts we desired to incorporate into our speci-

fications.

2.2.3.3 Conclusion. The four object-based languages listed in Section 2.2.3.1 seemed

suitable as our object language and survived our initial cut. Of those languages however, REFINE

and RML seemed particularly useful. We still needed to consider two important factors before

making our final language choice. First, we had to consider the nature of the information that

we needed to model with the language. Each analysis model (STM, DFM, and ERM) had to

be examined to determine what information each model is capable of describing. The informal

models also had to be considered as a group to determine if there was any overlap, redundancy,
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or interdependence in the three representations. The second factor we had to consider was how

the information needed to be captured in the object language. The representation must encourage

the user to specify his system in an object-oriented and loosely coupled manner while facilitating

an automated translation technique that is simple and direct. These issues and other important

considerations are addressed in Chapter III. Another objective of our literature search was to locate

current research on translating informal specifications into formal specifications. The next section

discusses several groups' efforts to perform this translation.

2.3 Transforming Informal Languages to Formal Languages

Frequently, formal and informal specifications are viewed as competing techniques where only

one method or the other can be used to develop a system. However, completely divorcing informal

modeling languages from formal languages does not take advantage of the unique benefits offered

by each class of languages (13:456). One goal of this research was to represent the information

contained in informal modeling techniques in an object-based formal specification language. Doing

so can bridge the gap between people's mental understanding and the formal semantics. Several

groups have made progress towards bridging the gap.

2.3.1 Structured Analysis to Vienna Development Method. Fraser, Kumar, and Vaishnavi

offer motivations for bridging the gap between informal and formal specifications and two meth-

ods for transforming an informal specification into a formal specification. The authors selected

a payroll system to illustrate this transformation and used Yourdon's Structured Analysis (SA)

technique and the Vienna Development Method (VDM) as the informal and formal languages, re-

spectively. These languages were chosen because they represent their respective classes, they are

widely accepted in academia and industry, and they have extensive methodology support infras-

tructures (commonly accepted standard and notations, verification mechanisms, etc.). The first

transformation method presented was a cognitive approach that uses SA modeling techniques to
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guide the analyst's understanding of the system and to assist in developing the VDM specification.

The second method was a rule-based approach for generating VDM specifications. (13:456-458)

The transformation method requires the problem to be informally modeled using Data Flow

Diagrams (DFD). The lowest level DFD functions (functional primitives) are then described us-

ing transform descriptions represented as Decision Tables. The technique for developing VDM

specifications from SA decomposition consists of a three step process:

1. Representing data flows in the data dictionary, and representing inputs from and outputs to

external entities in an abstract syntax,

2. Producing a specification for each transform in the DFD,

3. Using VDM combination constructs to combine the specifications according to the architec-

ture provided by the leveled DFD. (13:457)

The second approach is a rule-based method for interactively generating VDM specs. This ap-

proach cannot be completely automated, however, since control flows and control processes in DFDs

and STDs are not required to conform to structured analysis sequencing and iteration constructs

and must be manually restructured. Therefore, whenever a control flow or process is encountered

the analyst must restructure them to conform to structured constructs. The automated conversion

is based on three VDM conversion and composition rules. The first step consists of mapping decision

table descriptions into VDM specifications using VDM's decision table conversion rule. Following

this conversion, the specifications are then composed in a bottom up fashion using VDM's sequence

composition rule and also its while process composition rule. (13:458-462)

Toetenal, Katwijk, and Plat have performed a similar transformation between SA and VDM.

The authors provided a table describing a mapping from DFD constructs to VDM equivalents.

A potential problem noted, however, was for most constructs there may exist more than one

VDM equivalent. The authors also added the capability to modify the VDM specification in two

different, but related, ways depending on the intended use of the specification. The first form
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of modification is named OOFsi, and is a design method based on an object-oriented paradigm.

OOFs selects components from the initial VDM specification and iteratively refines these objects

into an object-oriented VDM specification that can be simply implemented into a final product.

A second modification method, termed SOFOs2 , transforms the initial VDM specification into a

"stream-oriented" VDM specification. The SOFOs approach is a three step process which leads to

an executable prototype. Therefore, depending on the developer's intentions for using the VDM

specification, either OOFs or SOFOs methodologies can be applied. (26:121-126) At the time of

publication, neither of these methodologies were automated.

2.3.2 SADT to RML. Greenspan also has described a method for translating an informal

language into a formal language. Greenspan developed the formal language RML, and established

"a manual mapping of SADT constructs to RML. The transformation is accomplished by creating

"a generic object in RML for each concept defined in SADT and then specifically defining those

objects in RML. RML captures the SADT structures in an object-oriented format and it uses

powerful assertions to specify intended behavior and structure completely. (15:53-79a)

Each RML requirement model consists of several concept models where each SADT decom-

position represents a concept model in RML. Further details for capturing the contents of SADT in

RML are also addressed. Greenspan also conducted a thorough analysis of SADT to learn what in-

formation and concepts SADT contains and how to represent this information in RML. (15:53-79a)

Greenspan's transformation methodology was not automated either.

2.3.3 SADT to REFINE. A recent thesis effort by Douglass at the Air Force Institute of

Technology has resulted in the development of a methodology for translating SADT information into

a formal specification language, REFINE. The overall goal of Douglass' thesis was to automate the

creation of an executable specification. After evaluating the SADT language, Douglass determined

I expansion of acronym not provided by source
2
expansion of acronym not provided by source

26



that the existing SADT model did not contain enough detailed behavior information to enable its

translation into an executable formal specification. That is, the existing SADT model does not

contain any information to indicate what inputs result in what outputs or what pre-conditions

result in corresponding post-conditions. To resolve this deficiency, Douglass extended the SADT

model by adding decision tables for each leaf node activity to capture the relationship between the

state or value of all inputs and controls, and the corresponding state or value of all the outputs.

(10:23-25) With this extension defined, he developed the following translation technique:

1. Define a subset of both SADT and REFINE languages.

2. Develop a Common Representation to which SADT and REFINE can easily map.

3. Map the language constructs.

(a) Convert SADT to an SADT subset with decision tables.

(b) Convert SADT subset to Common Representation.

(c) Convert Common Representation to REFINE subset.

(d) Convert REFINE subset to REFINE executable. (10:25-31)

Table 2 shows how the language subsets were mapped to each other.

Language Subsets

SADT Common Representation REFINE

Activities Functions Function

Inputs & Controls Pre-Condition Variable Declaration

Outputs Post-Condition Variable Declaration

Decision Table Transform Transform/Rule

Table 2. SADT to REFINE Language Mappings

Because the Common Representation to REFINE translation is so straightforward, no further

conversion was necessary to obtain an executable REFINE program. The translation of decis.an
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tables into REFINE was also simple. Each row of a decision table corresponds directly to one

transform statement and all rows of each table must be mutually exclusive.

Douglass noted several benefits of this transformation technique. First, simulating the system

behavior enabled him to very quickly correct deficiencies in his specifications and produce highly

accurate specifications. Secondly, if his translation technique were automated, then only simple

changes to the decision table are needed to automatically generate modified REFINE code. This

is beneficial for generating "What if?" scenarios. Additionally, the REFINE source code can serve

as the basis for design and implementation phases. Lastly, this enables any future changes to

requirements to be handled by modifying specifications rather than source code. (10:41-43)

2.4 Conclusion.

This chapter has researched current literature to:

* determine what characteristics a "good" object-based specification language should possess,

e select a specification language as a basis for our object-based language,

* discover informal to formal specification translation techniques.

Figure 3 summarized the capabilities of several specification languages in terms of desirable

object-based language characteristics. Several useful object languages for this thesis were identified.

Chapter III provides further requirements analysis of 'ie detailed description of data necessary

for representing informal modeling techniques. This analysis clarifies which specification language

format is best suited for our research. Based on our literature search, the most attractive candidates

were:

"* REFINE - highly descriptive and compatible with target environment, and

"* RML - very descriptive and fewer degrees of freedom than REFINE.
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Additionally, two informal to formal translation techniques of particular interest to us were

introduced. The first technique translated Structured Analysis (Data Flow Diagrams) specifications

into VDM specifications. This translation was beneficial for several reasons. First, the translation

presented an example of a way to map informal information (both static and dynamic) into a

formal specification. Second, DFDs, one of the three main models we will translate, were used in

this translation process. Third, VDM is similar in many aspects to our target language, REFINE.

The four translation techniques described in Section 2.3 provided a significant amount of

insight for us while we were developing our translation methodology. Unfortunately, none of these

translation techniques (to our knowledge) have been successfully automated, and none have de-

veloped a unified model for representing the information contained in ERMs, DFMs, and STMs.

The next three chapters describe in detail the approach and implementation of our automated

translation.

Chapter III defines a unified representation necessary for translating several informal modeling

techniques (ERMs, DFMs, STMs) into a formal specification.
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III. Requirements Analysis

3.1 Introduction

Software problems can be analyzed in many different ways. Three commonly used analysis

tools are Entity Relationship Models (ERM), Data Flow Models (DFM), and State Transition

Models (STM). These tools help define the system requirements, and form a basis for developing

test cases to evaluate the system. This chapter analyzes these systems analysis models to determine

the information represented by each modeling technique. The purpose of this analysis was to

clearly identify information contained in each model, and determine any areas in which overlapping

information is represented.

Each model can be considered as a group of data items or essential objects that describe a

problem. By combining the essential objects of each model into a single model, a unified object-

based model can be derived which is capable of representing the information and behavior captured

by each informal model. We must also develop a methodology to express the objects defined by

the unified object model in a way that can be computer-manipulated. In this case, we need a

syntax defining a textual language, and a set of rules for converting an informal model into a

textual (compilable) specification to express the content of an informal model in terms of the

unified object model. The resulting object modeling language serves as a basis for describing

an intermediate representation which simplifies automated translation from an informal analysis

model into the REFINE object base. Once in the REFINE object base, the model can be exercised

to demonstrate how the informally described system would behave. Execution of the specification

provides a convenient means to compare the newly-generated, formal specification against the

intended behavior described in the informal analysis models.

The goal of our research was to transform the information contained in informal analysis

models into an executable formal specification that can be used to verify anticipated system behavior
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and serve as a basis for formal software derivation. The following strategy was established to achieve

this goal:

1. Analyze various informal requirement specification models (ERMs, STMs, DFMs)

2. Develop a Unified Abstract Model (UAM) capable of modeling information contained in the

three informal models

3. Define an Object Modeling Language (OML) that represents the UAM in a formal, textual

format.

4. Translate the OML into a REFINE Abstract Syntax Tree (AST)

5. Manipulate the AST to simulate behavior of the specification and/or develop REFINE source

code.

This approach is graphically represented in Figure 4. This chapter addresses the first two steps of

this process. The first part of this chapter details the data items necessary for modeling DFMs,

ERMs, and STMs. These models were chosen because of their wide use in the software community to

specify software requirements. Analyzing these models was necessary to accurately and completely

understand all information, both static and dynamic, that each model is capable of describing.

DFMs primarily illustrate the functions that a system must perform; ERMs represent the objects

and stored data in a system, and the relationship between these objects and data stores; and STMs

model the event-dependent behavior of a system (29:68-70). Each model is described in terms of

the standard data items it contains. Later, these elements are represented in an object-oriented

architecture required by the Unified Abstract Model and represented in its textual form, Object

Modeling Language. That is, each model is described in terms of objects (essential elements),

associated attributes (descriptive factors about the essential elements), and relationships between

objects. This approach was selected since software designed in this manner is usually very loosely

coupled and can be easily modified or expanded to include other model types.
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Figure 4. Informal Model to REFINE translation process

The second part of this chapter describes a Unified Abstract Model (UAM) that is capable

of representing all three informal models. The intent of the UAM is to be highly general, yet
robust enough to fully represent any informal analysis model or combination of models without

duplication of elements. Thus, the UAM must be capable of modeling all specified data and

preserving all intended behavior without adding any additional behavior. The UAM serves as

the framework for defining the elements required in the Object Modeling Language (OML) (an

intermediate representation) which is described in Chapter IV.
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3.2 Evaluation of Informal Models

This section focuses on three popular informal analysis models: ERMs, DFMs, and STMs.

Each of these models specializes in describing a specific aspect of a system while neglecting complete

descriptions of the other aspects. ERMs model all the data contained in a system and provide

information on how the data are interrelated. DFMs emphasize the functional processes a system

must perform and describe the transformation of input data into output data. STMs describe the

event-driven relationships in a system. (29:68-71) This section describes in detail the elements

comprising each model and how the models overlap. The next section describes how they are

represented in the Unified Abstract Model. The purpose of this analysis was to construct a set of

elements that fully describe all aspects of a system. From this set, a minimal subset can be selected

to create a unified abstract model.

3.2.1 Data Flow Model Analysis Data Flow Models are typically constructed using a top-

down decomposition approach. Beginning with the initial system description, the specification is

functionally decomposed into processes, data stores, and terminators which are linked together with

data flows. Each process is abstracted to the desired level of detail until the specification provides

a suitable level of understanding for both the user and the developer. A DFM mny also contain

control process and control flow information to model behavior present in real-time systems.

* Processes. Processes represent the transformation of data or the actions performed on data

in a system. A process can be described by the data it uses (an input flow), the data it

produces (an output flow), and the activity of the process. The input and output flows may

be as large or as complex as necessary to satisfy the process behavior; however, they should

be appropriate for the level of abstraction of the model. The number of behaviors needed

to describe the activity of a process also depends on the desired level of abstraction. DFMs

provide an excellent overview of the important functional components of a system but do not
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provide any textual details on the transformation of the data. These are contained in the

process specifications that accompany the models (29:68).

"* Flows. Data flows are another major component of DFMs and they can be described as data

in motion (29:143). They represent the information passed from

- one process to another process, store, or terminator,

- from a store to a process or terminator, or

- from a terminator to a process or store.

A flow can be fully characterized by the data it carries, and by its source and destination

endpoints (the process, store, or terminator that produced it and the process, store, or termi-

nator that consumes it). It can be thought of as an association between two entities, although

it is not necessarily a complete interface description and may not exist at all points in time.

" Control Processes. Control processes are part of an extension to DFMs to model the timing

aspects of real-time systems. These processes act as coordinating devices that activate other

processes in the DFM by sending and receiving control flows. Because of their supervisory

nature, there is typically only one control process per level of abstraction in a DFM. (29:173)

" Control Flows. Control flows are similar to data flows; however, the information they contain

is not a value. It is a flag or an indicator for a process to execute. Control flows are a way

for a control process to activate a transformational process. Upon completion of the process,

another control flow may be returned to the control process to notify it that the process it

activated has completed. (29:172)

"* Stores. Stores represent collections of data. Data are described by a collection of attributes:

the simplest descriptions of information that can be represented in a system. Attributes

are the link between the real world object and its software counterpart; that is, the target

computer's representation of integers, real numbers, characters, and strings. These atomic
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definitions can be grouped into higher level data items, which in turn can be grouped into

sets or sequences to represent information stores. (29:149)

" Terminators. Terminators are entities of the outside world that interface with the system but

cannot be changed by the system. They are important because they model the environment

in which the system resides. (29:155)

"* Data Dictionary. The data dictionary functions as a glossary of terms. It contains a listing

of all the objects or data elements with which the system works. All composite items are

expanded to show the data content and interrelationships. (29:188)

3.2.2 Entity Relationship Model Analysis Entity relationship models characterize the infor-

mation in a system as a group of objects that are related to each other by associations or relation-

ships. From a functional decomposition point of view, ERMs graphically depict the relationship

between data stores shown in process diagrams (23:267).

" Entities. Entities are sets or collections of objects or concepts that exist in the real world

and are of interest to the system. Each member of the collection can be uniquely identified by

the value(s) of its attributes. Attributes or data elements contain information that describes

all aspects of the object that are important to the system. Entities correspond to the stores

component of DFMs. (23:271)

"* Relationships. Relationships describe the static association between entities. They char-

acterize important information about the way entities interact that cannot be derived from

other information stored in the system. Information that must be maintained about the re-

lationship between two entities, known as link attributes, are commonly represented by data

elements (attributes) associated with a relationship. (23:32) Relationships can describe three

kinds of associations: A super-type/subtype or generalization relationship, sometimes called
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an "is a" relationship; an aggregation relationship, which we refer to as an "ico" (is composed

of) relationship; and a general relationship.

* Attributes. An attribute is a single characteristic that describes a specific aspect of an object.

An object can have multiple attributes that should capture all information important to that

object. Also, all attributes should be independent of one another. (24:26)

3.2.3 State Transition Model Analysis State transition models document the dynamic char-

acteristics of the system model in terms of states and events. Events document stimuli from outside

the system, or from one state in the system to another. The response of an object to an event

depends on the current state of the object. An activity is the response the object takes when an

event is detected that causes a change in state. Rumbaugh differentiates between two types of

state behavior: activities and actions (23:101). Activities have duration and are associated with

the behavior of a specific state. They execute until they complete their function, or are interrupted

by an event which causes a transition to another state. Actions are a type of behavior associated

with events that occur when entering or exiting a state. Actions occur instantaneously or in so

short a time that they appear to occur instantaneously.

" States. States are defined by the range of values that certain object attributes or groups

of objects can possess at a particular time (i.e. its state space). Therefore, state represents

a stage, or period of time, in the lifecycle of a system. A state is also an abstraction of an

observable system activity that is waiting for some event to occur. A state has a duration

and is associated with a time interval during which the system is performing some activity.

(29:260-263)

" Events. Events are some condition or set of conditions that the system can detect. Events

are considered to have no duration and can be thought of as signals that are transmitted from

one object to another. Rumbaugh describes them as "all signals, inputs, decisions, interrupts,
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transitions, and actions to or from users or external devices (23:173)." Rumbaugh allows the

association of an action (behavior) with an event.

a Activities and Actions. Activities and actions capture the behavior of a system. Actions are

considered to occur instantaneously, while activities have duration. STMs typically refer to

several types of behaviors: entry actions, exit actions, sequences of (control) behaviors, and

"do" activities. Entry and exit actions are performed on objects as a result of a change from

the current state to the next. Entry actions are most commonly implemented; however, exit

actions may also be needed to handle error conditions or other required actions when an event

interrupts the "do" activity of a state. Sequences of behaviors represent control sequences,

that is, the generation of events that cause changes in other objects (and changes in system

state). Finally, "do" activities are equivalent to processes in the DFM. These behaviors can

be expressed by Program Design Language, Decision Tables, or Pre- and Post-Conditions.

(23:92-101)

Now that the essential elements of each informal analysis model have been identified, the next

step is to combine all of these elements into a single, unified model. The next sections describes

our rationale and how we have composed these model elements into a unified abstract model.

3.3 UAM Architecture Development Rationale

We began our research by focusing on object-oriented languages. It became very natural

for us to consider the informal models as collections of self-contained elements. Each essential

element represented a component of an STM, ERM, or DFM and was evaluated to determine what

attributes (or facts) were necessary for it to be fully described. To us "fully described" meant

that enough information was contained in a description so that an automaton with no inferencing

ability could build a useful executable specification component out of it without using any other

information.
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After each element was evaluated, we began looking for general similarities among the essential

elements. Some informal model elements represented connections between other informal model

element types. These connector elements had no definition other than to describe how two or

more elements were interrelated. These elements formed our Association superclass. All other

elements were grouped into the Object superclass. After making this first division, we began a

detailed comparison of all the elements that we had assigned to each superclass. In the Object

superclass there were several elements that represented passive objects (entities, terminals, and

data dictionary entries). Because these elements were so similar, we combined them into one class

(Entities) and provided that class enough attributes to fully describe any of the elements included

in it. The same line of reasoning was used to combine control processes and states into one object

class (States) and control flows and events into one association class (Events). Finally, we noted

that several Object classes contained a behavior or action. We felt that behavior could be specified

more clearly if it was described separately. The process, state, or event with which the behavior

is associated only defines when the behavior will occur as the specified system executes, therefore

behaviors, states, events, and processes can be described separately.

3.4 Unified Abstract Model

The analysis of the DFMs, ERMs, and STMs resulted in the identification of an essential

set of elements needed to completely represent each of the informal analysis models. This section

combines these elements in a manner that interrelates the various models and eliminates unnecessary

duplications. The word object is used quite often in the following sections and can have different

meanings. Therefore, when speaking of the superclass, Object is capitalized. Any general use of the

word object is in lower case. Table 3 summarizes the set of elements necessary to represent each

model. Th'e entries across the top are objects that exist in the Unified Abstract Model (UAM).

Entries along the left column indicate the elements typically associated with each of the three

analysis models. An "X" in the table indicates how each informal analysis element is represented
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UAM Object Type

Model Object Association

Process State Store Entity Behavior Event Flow Relationship

DFM

Process x

Process Specification X

Store X

Control Process X

Control Flow x
Data Flow X X

Terminator X

Data Dictionary X X

ERM

Entity X X

Attribute X

Relationship x
STM

States X

Actions X

Activities X

Events X

Table 3. Mapping Informal Model Elements To Unified Abstract Model Elements

in the UAM. For example, the activities associated with a STM are represented as behavior objects

in the UAM. Initially, the UAM modeled all its Object types in one group. However, the elements

are better conceptualized in two Object categories: Objects and Associations. Objects represent

data, conditions, or activities (things represented by terminals of some sort in the informal models).

Associations represent some form of relationship between two objects (things represented by arcs

or links in the informal model). Association object types describe how one or more Objects are

related to each other. Relationships (from ERMs) associate entities with each other, events (from

STMs) associate a state with its successor, and flows (from DFMs) associate the producing and

consuming processes. These three objects, therefore were grouped into the Association superclass.

The remaining objects (processes, states, stores, entities, and behaviors) were grouped into an
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Object superclass. Association objects, therefore, represent a relationship between two or more

elements from the Object superclass.

Many of the mappings between the informal model elements and the UAM objects are

straightforward. However, some of the mappings require explanation. DFM control information ac-

tually represents information about the state of a system and the sequencing of events which cause

state transiticrs (23:129). Therefore, the UAM models all process control information contained

in control processes as state behavior objects, and all control flows as event objects (an association

between two states). All data in a DFM is considered to be a single entity or a group of entities

(a store). Therefore, a data flow is a combination of a flow association (between processes and/or

stores) and an entity (the data associated with the flow). Processes are described by their input and

output data flows and contain a behavior that models the process's activity. Therefore, a process

in the informal model maps to a process object, a behavior object, and flow objects (representing

in-flowing data and out-flowing data) in the UAM .

Primarily, the UAM serves as a template consisting of object class definitions. The only

exception to this is the Entity class. Entities are used to describe many types of data that must be

specifically tailored to their application. Entities are also used to describe categories of information,

such as the generalized types of items that can be contained in data stores. Because they define

characteristics of a group, it was more natural to allow class definitions of entities as well as instance

definitions of entities.

To further define the nature of the Unified Abstract Model (UAM), the relationships between

these classes needed to be defined. These relationships are graphically depicted in Figure 5. A class

hierarchy was a very natural modeling method to use for this description. It shows the structure

of the UAM by showing relevant objects, their attributes, and the relationships between various

objects that were once parts of the three informal models. (23:21) For our purposes, decomposing

the informal models into their essential elements and re-composing them into a hierarchy helped
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refine our understanding of the analysis objects and develop a more abstract model that was used as

a basis for the Object Modeling Language (OML). Figure 5 is an ERD showing the decomposition

of the analysis objects contained in informal models. Each group is discussed below:

3.4.1 Objects An Object is defined as a "concept, abstraction, or thing with crisp boundaries

and meaning for the problem at hand (23:21)." It serves to promote the understanding of a

problem and provide a basis for computer implementation. Therefore, all concrete or conceptual

things are grouped into the Object class of the formal model. The Name attribute is a unique

identifier associated with each object instantiation and is the only inherited attribute for all Object

subclasses. Each subclass of Object as shown in Figure 5 is defined below:

"* State. A state object represents the set of conditions (attribute values and relationships)

characterizing the state of a system during a given period of time. A state is defined by the

activity which is occurring at that time, and the set of events which cause a transition into

and out of that state. Therefore, each state object is composed of attributes representing

start events (which cause a transition into that state), exit events (which cause a transition

out of that state), state-space (a collection of objects and the ranges of values of the objects'

attributes that characterize the state), and an activity (the state's behavior). The behavior

describes control activities that occur in the state, data transformation processes that occur in

the state, and boundary conditions that generate events. The State-Space attribute explicitly

defines which objects and attribute values constitute the state space.

"* Entity. An entity object is defined by its attributes. Attributes are analogous to fields in

a record. They allow the specifier to tailor entities to the data that needs to be specified.

The Entity-Type attribute is used to specify whether the entity is internal or external to the

system. To further define the entity subtypes, each subtype also possesses its own unique

attributes which can be defined by the specifier. Details of how these attributes are defined

are discussed in Chapter IV.
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" Store. Store objects represent collections of data elements in a system. The Nature attribute

of the store defines whether the ordering of the data is significant (a sequence) or not (a set).

The Key attribute defines the entity Name attribute of an entity class that an ordered store

is sorted on. The Order attribute is used in connection with the Key attribute and selects an

ascending or descending order. These two attributes are used when a store is defined as being

sequence-natured. The Content attribute is an entity class. The store consists of instances

of this class.

"* Process. A process object represents the functional operation of a system which transforms

data. A process is characterized by its In-Flows attribute (a set of incoming flow objects),

its Out-Flows (a set of outgoing flow objects), and its Activity (the behavior that transforms

data in the process) attribute.

"* Behavior. Behavior objects were added to the UAM to capture the dynamic and func-

tional behavior of a system in a manner which is suitable for an automated translation from

a specification language to an executable form. This representation must provide sufficient

detail to build functioning modules that can be composed into an executable representation.

The UAM provides three different mechanisms for describing the dynamic behavior of a sys-

tem: Program Design Language (PDL), Decision Tables (DT), and Pre- and Post-Conditions

(PPC). A subset of the Ada language defined in Appendix B is used as the PDL baseline.

Any PDL with a formal notation can be used as the PDL standard. A formal notation is re-

quired, though, to enable an automated translation into an executable REFINE specification.

Behaviors describe the actions performed by processes and the activities performed by states.

Rumbaugh's STM distinguishes entry and exit actions associated with state transitions from

the continuous behavior of the state.

3.4.2 Associations. Associations represent connections between objects. They are described

by a unique Name, and the objects that they associate. An association can be either bidirectional
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or unidirectional. Relationship Objects show a bidirectional association between two Objects.

An Event Object is a unidirectional association of two State Objects. Flow Objects are also

unidirectional. The Name attribute serves as a unique identifier to distinguish Association Objects.

The From-Object and To-Object attributes indicate which objects are related to each other. If a

unary association is desired, then the objects are only related in the direction of the From-Object

to the To-Object. If a binary association is required for a Flow Object, then two associations must

be instantiated: one for each direction of association. In addition to these common attributes, the

relationship, event, and flow associations have their own unique attributes:

9 Events. An event association shows the relationship between two states of a system. The

event is theoretically considered to be an instantaneous occurrence which causes a transition

from one state into another. Certainly, any real action must take some amount of time; how-

ever, an event is the triggering condition which causes a state transition and is conveniently

modeled as an instantaneous action. Control flows, which are usually modeled in DFMs, are

modeled as events in the UAM. Control flows indicate the arrival of a specific condition or of

a boolean value to a process object. Control flows do not represent data to be manipulated

but rather information regarding an event which causes an activity. Therefore, a control flow

can appropriately be modeled by an event object. (23:129) Event associations also require an

Event-Type attribute which indicates whether the event occurs from an internal or external

source. Events also have an optional Priority attribute which indicates precedence among

simultaneously occurring events. The optional Action attribute is a behavior that occurs

each time the event occurs. This feature has been included to keep the UAM consistent

with Rumbaugh's (23) methodology. Although the capability to express actions exists in the

UAM, this feature is not be used in our examples. All behavior is typically captured within

the activities of a State Object.
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"* Flows. Flow associations indicate the movement of data into or out of a process object. A

flow association therefore must provide a Data attribute and a Flow-Link attribute to capture

this information. The Data attribute references an entity object which specifies the data

elements that are in motion. The Flow-Link attribute indicates the types of the two related

objects. Flow-Links are only valid between certain combinations of objects. Legal links can

be formed between the following object pairs: Process-Process, Process-Store, Process-Entity,

Store-Process, and Entity-Process.

"* Relationships. Three relationship Types have been defined: Is Composed Of (ICO), Is A

(ISA), and General Association (GEN). The first two types group low-level objects into larger

objects and represent inherited characteristics. The third represents any other association

between two objects. General Associations are typically used when describing ERMs. This

appears to be the smallest set of relationship types required. Ternary relationships may be

modeled by multiple general associations. Link attributes are a special case that can also be

represented in terms of multiple binary relationships. The Cardinality attribute indicates the

multiplicity of the related objects. Cardinality can be represented as a one to one (1-1), one

to many (1-m), many to one (m-1), or a many to many (m-m) relationship.

The architecture of Figure 5 is conceptually descriptive, but many Objects contain attributes

that reference other Objects. These are called referential attributes and they form an undesirable

coupling between objects (23:27). This coupling makes a specification based on this architecture

difficult to modify while maintaining its consistency. To eliminate this problem, the cross-references

can be extracted out and recorded in a relation table with no loss in the clarity of the description.

The resulting architecture is shown in Figure 6. The relation-table documents all the relationships

between the other object instances contained in the UAM. It is a set of tuples that connect together

two object instances and the association instance that relates them. The referential attributes were

removed to a table for the following reasons:
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1. The UAM works with instantiations of the class types. In the case of many-to-many relation-

ships, this can lead to two problems. The first is modification. If an object is modified and the

many-to-many relationship changes, instances of other objects must be searched until all ref-

erences to the changed object are found. If the relationship is maintained in a relation-table,

the search becomes more straightforward. Second, our goal is to keep the process that we

are developing platform independent. While REFINE has a means to handle many-to-many

relationships, not all commercially available data base languages do.

2. The attributes of an object should be values, not other objects. This disguises the fact that

the association is dependent on both objects and that it is not a part of either object by itself

(23:24,27).

3. Referential attributes disguise the association as part of an object, when in fact, the associ-

ation is dependent on both objects together. In many programming applications, referential

attributes are represented by pairs of pointers that act as a bidirectional link. Even this is in-

sufficient for specification because it hides the fact that the forward and reverse relationships

are dependent on each other. (23:27)

4. Removing the referential attributes decouples the objects and forces the specifier to think in

terms of what objects the system contains and how they are associated. As a result, objects

are more self-contained, and associations are explicit.

5. Multiple cross-references make updating a specification and maintaining its consistency very

difficult. The original architecture is conceptually very appealing. Representing models in

this form is easy to understand, but creates a specification that has many cross-references.

Specifications are judged by several criteria, one of which is maintainability (3:58). The

revised architecture is slightly more difficult to understand, but yields a specification that

has very low coupling and can be easily maintained. Should a specifier find this architecture

difficult, it would be easy to initially model the system in the previous (highly coupled) form
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and extract the revised architecture from this model. To do the reverse would not be as

simple.

For these reasons, we selected the architecture of Figure 6 as the basis for the remainder of our

work.

3.5 Summary

The architecture for the Unified Abstract Model has now been defined. Figure 6 provides the

formal graphical notation for representing classes, objects, and associations in the UAM.

With this analysis and modeling accomplished, an intermediate language representation, or

Object Modeling Language (OML), can be defined to facilitate the automated translation process

to convert an informal specification into a REFINE Abstract Syntax Tree (AST). Chapter IV defines

the syntax and requirements of the OML and describes the process for transforming an informal

specification into an OML specification that can be compiled using REFINE. Chapter V presents

our method for utilizing REFINE's AST. The first approach defines a computational process to

traverse the AST and produce REFINE source code which can be compiled and executed to show

system behavior. The second approach simulates the behavior of the specification by traversing the

AST and executing objects in the tree based on the object's structure. Each of these methods for

utilizing the information in REFINE's AST provides unique benefits to the software development

process.
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IV. The Object Modeling Language

4.1 Background

The Object Modeling Language (OML) described in this chapter defines an intermediate

representation for bridging the gap between informal software specifications and equivalent exe-

cutable formal specifications. Albrecht et. al., at the University of California at Berkeley, describe

a method for translating one high level programming language into another. They state that an

intermediate language provides a common representation to which the source and target languages

can easily map. The common representation should enable the mapping to be simple, repeatable,

and behavior-preserving (1:183); we developed OML to meet these requirements. OML is uniquely

qualified to formalize informal specifications for the following reasons:

1. It provides a unified representation to which Data Flow, Entity Relationship, and State

Transition Models can easily map.

2. It was designed to facilitate the automated translation of the above-mentioned analysis models

into REFINE executable specifications.

Figure 7 depicts the importance of OML for the translation of informal specifications into formal

specifications. Essentially, it serves to "bridge the gap" between informal and formal specifications.

The OML, an intermediate representation, was beneficial to our research for several other reasons.

"* It formalized the translation process of a source language into a target language so that the

process is consistent and correct, and not affected by the skill of a specifier/analyst.

"* A canonical representation facilitates an automated generation and optimization process.

"* Without an intermediate representation, a unique translation mapping would have to be

created for every unique problem.

"* It forced a critical analysis of the modeling process. In order to design an intermediate

representation language, the content and purpose of the informal modeling tools needed to
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be analyzed. This, in turn, illuminated the general process, not just one translation effort.

This is a beneficial software engineering approach.

Building a modeling language was not our first (nor most desirable) approach for providing

an intermediate representation. Using an existing specification language was the first, most logical,

approach for providing an intermediate language. In searching for a language to serve as the inter-

mediate representation, we reviewed many currently available specification languages. Chapter II

provides a summary of the specification languages surveyed. At the conclusion of our language

survey, the Requirements Modeling Language (RML) (15) and the REFINE language (22) were the

leading candidates for filling this role. However, after more intense scrutiny, neither of these lan-
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guages were adequate for providing a unified representation of DFMs, STMs, and ERMs that can

be easily translated into an executable specification.

RML was built with several beneficial modeling language principles in mind. Its mathemat-

ical basis is built on first order logic, and it incorporates several beneficial abstraction principles.

RML specifications take advantage of the direct and natural modeling abilities of object-oriented

decomposition, including generalization and aggregation. It also allows the expression of assertions,

the description of entities, and the capturing of activity behaviors. We found all of these capabili-

ties and qualities very important for our intermediate language. However, after studying the RML

grammar and the example problems provided in Greenspan's dissertation (15), we found numerous

difficulties and inconsistencies with using RML. The principles upon which RML was built and

many of its constructs and capabilities have been incorporated into the Object Modeling Language

(OML). However, using RML in its entirety does not satisfy our needs. The following are some of

RML's problems which have been addressed by OML.

"* RML does not support the direct modeling of the analysis models focused on in this thesis. In

OML, we have modified several of RML's constructs to clearly and directly support a unified

representation of entity relationship, data flow, and state transition models.

"* RML establishes relationships within entity descriptions without fully describing the details

of the relationships. It uses referential attributes to relate objects but does not capture details

of the relationships such as direction or multiplicity. Referential attributes do not support

object-oriented requirements for loose coupling of objects. As mentioned in Chapter III, the

UAM, and thus OML, eliminates the use of referential attributes by using relation tables.

Additionally, OML relationships possess a cardinality attribute to capture multiplicity, and

Association class objects have implicitly defined directions (flows: unidirectional; events:

unidirectional; relationships: bidirectional).
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"* RML is extensible. The language allows the user to specify an unrestricted set of constructs at

various levels of abstraction which makes the language very difficult for automated translation.

Knowledge required by an automaton to manipulate an extensible language is beyond the

scope of this thesis. OML has been restricted to only allow instances of predefined OML

classes, classes of Entity class objects (one of the predefined object classes), and instances

of these user-defined Entity classes. These restrictions help support the translation of OML

into an executable specification.

"* Some RML constructs are not amenable to an automated translation, and RML does not

always require the explicit definition of an object's description. RML allows the use of abbre-

viated constructs in its grammar. Also, when binding a value to an object's attribute, RML

does not require the attribute to be specified if it can be understood from the context in which

it is used. While this may not present problems in all cases, it can lead to ambiguities and

performance degradation in an automated translation. The translation of context-sensitive

languages into another format requires a more intense translation process. Such translations

require extra and more complex searching and added semantic checking which consequently

result in degraded system performance.

Defining a subset of the REFINE language was another option for specifying an intermediate

representation. On the surface, REFINE was an appealing choice since it would eliminate the need

to build a translator or compiler to convert an intermediate language into REFINE, and unlike RML,

REFINE'S grammar and syntax is robust and well-defined. REFINE is a wide-spectrum language

which allows the analyst to specify problems using any combination of high- or low-level constructs.

Additionally, it possesses constructs that allow functional, logic-based, and object-oriented solutions

to a problem to be developed. Further, we are very familiar with REFINE's syntax and capabilities.

From these perspectives, REFINE was an attractive choice. But, REFINE posed some problems
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as an intermediate language which conflicted with our goal of providing a generalized translation

process.

"* We desired our intermediate language to be specifically tailored to the domain of the Unified

Abstract Model (UAM). The domain-specific language, therefore must be capable of directly

modeling the components of ERMs, DFMs, and STMs as defined by the UAM. Although

the REFINE language is capable of representing informal models, it does not enforce a direct

mapping into the UAM.

"* We desired our intermediate language to be a generic host for translation into languages

other than REFINE. By using REFINE as our intermediate language, we would be limiting the

applicability of our translation process to the REFINE environment and those systems that

support REFINE.

The Object Modeling Language was designed to provide the most desirable capabilities of

both RML and REFINE, and to enable a unified representation of entity-relation, state-transition.

and data-flow models. Many of REFINE's capabilities, such as predicate logic, set and sequence

constructs, and behavioral description were incorporated into OML. The unified representation

provides an intermediate form that captures the three informal models in a simple, yet explicit,

manner which is easy to convert into an executable specification using an automated translation

process. Section 4.3 defines the syntax, semantics, and capabilities of OML and discusses how the

three informal modeling techniques are integrated into the OML architecture.

4.2 OML Goals

The investigation of several specification languages enabled us to define what capabilities we

wanted in OML. However, how do we know if OML is a good specification language? Before this

question can be answered, we must establish who is intended to create OML specifications, and

once created, who is intended to use OML specifications.
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OML specifications should be developed by a software engineer working in concert with an

application domain specialist. We envision specification development to be aided by an automated

elicitation tool that

"* eliminates syntactic errors,

"* enforces the standards of a "good" specification as defined below,

"* encourages the use of object-oriented decompositions,

"* avoids specifying implementation details, and

"* formats requirements into a textual (compilable) file that satisfies OML's syntax and seman-

tics.

The problem must have been analyzed in terms of ERMs, STMs, and DFMs prior to using this tool.

The software engineer must be able to develop these informal models to describe the problem or be

able to interpret models developed by others. He must also correctly -onvey the information in the

dialogue with the elicitation tool as the OML specification is generated. The application domain

specialist's knowledge is critical to ensure correct performance of the specification. The domain

specialist is needed to ensure that the details included in the informal specification, as entered

into and translated by the tool, are correct and to verify that the specification's performance will

meet the user's needs. As we developed our OML specification, detailed knowledge of the intended

operation of the sample problems was found in the problem description rather than the informal

models. The domain specialist would be best able to provide this detailed knowledge for a real

system.

Once generated, an OML specification is then manipulated by another tool that parses an

OML specification into a REFINE Abstract Syntax Tree (AST) representation and then transforms

the information in the AST into an executable REFINE specification. Figure 8 depicts the process

of eliciting requircments to develop an executable specification. We have developed the translation
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software that performs the operations required by the latter tool. The translation methodology is

detailed in Chapter V and the translation software is provided in Appendix C.

Requirements can also be formatted directly (manually) into an OML specification file, as

was done for this research (since an elicitation tool docs not currently exist), but this is not the

recommended approach. Autom~ating the generation of 0Mb specifications provides the following

benefits:
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9 It will consistently generate OML specifications that are syntactically and semantically cor-

rect. This does not mean the problem has been perfectly specified. Rather, it guarantees the

translation software will be able to convert it into an executable form.

9 It will guide the specifier in consistently developing a good specification. Note: Our definition

of a good specification is described later in this section.

OML was designed to encourage the writing of good specifications and to model specifications

that possess those qualities. Since the elicitation tool must interface with OML, the builder is

constrained to build a tool which enforces the way in which requirements are specified. That is, the

user will be encouraged to specify his requirements in a manner that meets the standards of a good

specification. However, writing a specification in OML neither guarantees that a problem is well-

specified, nor guarantees that it is correct. OML's strength is that it models a problem in a manner

which is easy to elicit from the user and which contains all the information necessary to facilitate

its direct translation into an executable specification. By exercising the executable specification,

the user can test the specification to determine if it correctly captures the desired behavior. If

the executable specification does not perform as desired, modifications are simply entered into the

elicitation tool and a new executable specification is generated. In this respect, OML specifications

are not intended to be manually generated or directly maintained. The generated REFINE source

code is also not intended to be directly maintained, but re-generated by the translator.

In addition to testing the correctness of the informal specification, the executable REFINE

specification also serves as a basis for software design. As illustrated in Table 1, correcting require-

ment errors before the system progresses into software design (or later stages) can significantly

reduce the cost and amount of time required to fix software errors. A consistent and correct spec-

ification provides a firm foundation for software design and development. A formal specification

also provides the formalism necessary for the automated generation of source code. We believe that
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automatic software generation will provide the same order of magnitude improvement in software

production in the 1990s as compilers and high level languages did in the 1960s.

In order to evaluate the goodness of OML, it is important to understand what a specifica-

tion is used for and some of the principles of good specification. Chapter II summarized several

articles which addressed these issues. Balzer and Goldman (3) authored an article which addresses

the criteria for judging specifications, the principles of good specifications, and the corresponding

implications for specification languages. OML satisfies many of their implications for a "good" spec-

ification language. This section summarizes Balzer's and Goldman's ideas. The reader is referred

to the article for a complete description of their standard.

There are three general criteria for judging specifications. These criteria are directly related

to how well the specification satisfies its primary uses.

1. Understandability. Since the specification serves as a contract between the specifier and

developer for the system to be developed, it must be clear, concise, and unambiguous. It also

serves as a basis for design and implementation.

2. Testability. The specification is used to determine whether the developer has satisfied the

contract; therefore, it must be testable.

3. Maintainability. The contract will change over time, thus the specification must be adaptable

to change. (3-58)

The following principles of good specification ensure the criteria mentioned above are satisfied.

Following the listing of these principles, OML is evaluated against each principle. One of the goals

of OML is to guide and constrain thi,: builder of the elicitation tool to enforce standards in his

tool which lead to specifications that are understandable, testable, and maintainable. A good

specification should:
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1. Separate functionality from implementation. A specification is a description of what is desired

rather than a description of how the desired action is accomplished.

2. Provide a process-oriented description to capture dynamic behavior. "Both the process to be

automated and the environment in which it exists must be described formally (3:59)."

3. Encompass the system and environment of which the software is a component. The specifica-

tion must accurately portray the system and environment with which the software interacts.

4. Accurately model the user's view of real world objects. The objects and operations defined

in the specification must correspond to real objects and actions in the domain.

5. Validate the results of the implementation. The specification must be complete and formal

enough to support functional testing.

6. Tolerate incompleteness and facilitate changes. System requirements frequently change as

time progresses. The specification's structure must easily allow modifications.

7. Localize and loosely couple objects. Independently specified components greatly improve the

maintainability of a specification. (3:58-60)

OML allows the specification of a problem that satisfies all of the above mentioned principles.

The OML syntax is precise, clear, unambiguous, and behavior-preserving. The specification of each

object is understandable and has only one interpretation. Behavior is described in terms of what

happens and it captures all necessary information without adding or losing any meaning. OML's

capabilities satisfy each principle in the following ways:

1. OML fosters the separation of functionality from implementation through its mathematical

and behavioral description capabilities. Activity behaviors can be specified in three different

ways: Decision Tables (DT), Pre- and Post-Conditions (PPC), and Program Design Language

(PDL) . Both DTs and PPCs strictly support the description of what is desired as opposed to
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how to obtain the desired result. Additionally, the predicate logic capabilities of OML further

separate the specification of a problem from implementation details.

2. OML can capture the dynamic behavior of a problem by describing it in terms of processes or

states and their associated behaviors by modeling all components of data flow and state tran-

sition models. PDL can be used to describe continuous type behaviors which DTs and PPCs

cannot capture. Continuous behaviors require that operations be performed on an object

over a period of time rather than at an particular point in time. For example, continuously

monitoring the status of a system while other operations are occurring is a continuous type of

behavior, while checking the status of a system at a specific point in time is not a continuous

behavior.

3. OML's ability to model ERMs (objects and relationships), DFMs (functional transforma-

tions), and STMs (dynamic behavior) allows the description of a software problem and its

associated system and environment to be consistent with informal modeling techniques.

4. OML was designed to support the object-oriented architecture defined in Chapter I1. The

modeling of a problem in terms of objects from the real world and relationships between those

objects promotes more understandable requirements, better designs, and more maintainable

systems (23:ix). Furthermore, OML has a well-defined syntax that is easy to learn and

understand.

5. An automated translation process has been developed to transform an OML specification

into a REFINE executable specification. The ability to execute an OML specification allows

its immediate testing to determine if it specifies the intended behavior. Additionally, this

formal specification serves as a basis for design, implementation, and validation testing. The

transformation process is described in Chapter V.
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6. Requirement modifications are easily accommodated in OML. Since an automated translation

process exists to transform an OML specification into an executable specification, the effects

of requirement changes can be immediately seen.

7. Two architectures for OML were described in Chapter III. The first architecture modeled ob-

jects with referential attributes to show relationships between objects. This architecture was

refined to reduce its strong coupling between objects. The final architecture on which OML

was built eliminated all such coupling by removing referential attributes and by describing

objects in their purest form with object relationships modeled in a relation-table.

4.3 OML Syntaz and Semantics

This section summarizes OML's syntax requirements and several important design decisions

made while defining the OML grammar. The complete definition of OML's grammar in Backus

Naur Format (BNF) is provided in Appendix A. As described in Chapter III, an OML specification

is created by defining a set of Analysis Objects (see Figure 5, page 41) which specify the problem.

The objects that can be instantiated are entities, stores, processes, states, behaviors, relationships,

events, flows, and relation-tables. The attributes associated with each of these objects are shown in

Figure 6 and are also delineated in the OML grammar, Appendix A. In addition to incorporating the

principles mentioned in the previous section, we made several other design decisions concerning the

OML grammar which have simp'ified the processes needed to automatically generate and translate

OML:

* Require as little information as possible in the specification without sacrificing clarity and

losing critical information. This minimalist attitude was responsible for simplifying the OML

syntax. For example, many languages such as Ada require the declaration of variables before

they can be used. In OML, variables are declared and used when they are instantiated in

Entity Objects. Requiring a minimal amount of punctuation was also desired; however, in
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order to eliminate parsing errors, a certain amount of punctuation was included. Only three

types of objects require end of line punctuation. If more than one user-defined attribute is

given for an Entity object, then each attribute definition must be separated by a semicolon.

Similarly, each pair of state space variable names and values must be separated by a semicolon.

Lastly, all rows in a decision table and all pre-post-condition statements must be separated

by a semicolon.

e Developing a specification which is easy to parse and translate was more important than

developing a specification that is visually appealing. Since OML specifications are intended to

be generated by an automated tool, the convenience of manual generation was not of great

concern. We were more concerned with developing a language which allows a straightforward

process for creating and translating OML specifications. Even though we were not concerned

with the manual generation of OML specifications, this does not constitute a license for the

specification language to specify constructs incompletely or inconsistently. On the contrary,

all uses of punctuation, keywords, and definitions are written in a consistent manner.

* Optimizing the size of the specification was not a concern. OML's grammar could have

been modified to simplify certain constructs and allow more compact specifications, but this

would have added extra complexity to the grammar and added difficulty in translating the

specification. Optimizations can also reduce the clarity of a specification which can lead to

ambiguities. Optimizations of these kind are not an appropriate concern for a specification

language. This is best reserved for the actual implementation. (3:58)

e Capture system behavior using Decision Tables, Pre- and Post-Conditions, and Program De-

sign Language. Capturing the correct behavior of a problem in the specification was a sig-

nificant hurdle when defining the grammar. There are two general types of behavior that

must be captured: control activities and transformational activities. Control activities define

the sequencing of activities or events which must take place in a system. These activities
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are generally considered to execute instantaneously although they actually execute in a very

short amount of time. Transformational activities occur over a period of time, cause a state

change to occur within the system being specified, and can be thought of as procedures or

functions in a high level language such as Ada. OML provides three methods for capturing

these behaviors: Decision Tables (DT), Pre- and Post-Conditions (PPC), and Program De-

sign Language (PDL). DTs and PPCs are excellent for capturing what the desired behavior of

a system is without specifying how to accomplish that activity. PDL is suitable for capturing

desired behaviors which are too complicated to capture in either DTs or PPCs and must be

limited to these situations.

"* Variable declarations must be data typed. As a rule of thumb, a specification should not impose

any implementation details. One example is not requiring the user to specify the data type of

variables or object attributes (i.e., integer, real, boolean, etc). However, to convert an OML

specification into an executable REFINE specification requires that variable types be defined.

Perhaps it is possible to extrapolate the data types of variables from other information in the

specification, but this requires a level of knowledge base sophistication which is beyond the

scope of this research.

"* Object Classes can only be created for Entity Objects. Modeling data elements using classes

and instances is a natural way for modeling data and is very important for conceptualizing a

problem. Entities, in an ERM, take advantage of such structuring of data. For this reason,

Entity objects can be created as classes or instances of a class. Many times during informal

analysis, other types of objects such as states and relationships are organized into classes and

instances of classes. For the purposes of developing an automated translation, we have not

seen a need for specifying hierarchies of these types of objects since all necessary behaviors

are usually specified at the leaf nodes (e.g., instantiations). If, at a later time, this design

decision is not sufficient for all applications, then a class structure can easily be added to the

OML grammar in a manner similar to that for Entity objects.
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"* User-defined attributes can only be defined for Entity Objects. Entity objects are the only

objects that have user-defined attributes in addition to those predefined in the OML archi-

tecture. Since Entities are used to describe real-world objects, the OML must be flexible

enough to characterize all required aspects of these objects. User-defined attributes are used

to describe these aspects. On the other hand, other Analysis Objects do not need as much

descriptive flexibility as Entity objects and cannot be augmented with user-defined attributes.

If descriptive deficiencies are found, additional mandatory or user-defined attributes can be

added to the grammar. The difficulty we expect to encounter if other Analysis Objects are

allowed to have user-defined attributes is how those attributes will tie into the execution of

the specification, and how the translation software will tie them in.

"* One or more relation-tables can be created. All relationships can be captured in one relation-

table or broken down into several different relation-tables. Creating one universal relation

table is easier to build; however, multiple tables can also be useful. From an automated tool

viewpoint, multiple relation tables can improve searching speed and modification efficiency if

implemented properly. For example, making a relation-table for each kind of Association Ob-

ject (Flow, Event, or Relationship) can simplify the search for a specific relationship. From a

human understanding viewpoint, separate tables will improve readability and understanding.

"* Decision Table rules are represented by the columns. Decision tables can be constructed

in several different ways. We selected the format recommended by Hurley (17). In this

format, the table can be envisioned as four quadrants. The top half of the first column

in a decision table represents the first quadrant. The entries in this column identify the

pre-condition variable names for each rule. The bottom half of the first column represents

the second quadrant which defines the post-condition variable names associated with each

behavior rule. Each remaining column in the table represents a behavior rule. The top half of

each subsequent column defines the values for each pre-condition variable, while the bottom

half of the column stipulates the post-condition values associated with the rule. If the pre-
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condition variable values in the top portion of a column are satisfied, then the values in the

bottom portion of the table are assigned to the post-condition variables. In OML the top

and bottom portions of a decision table are separated by the symbol "- ->". The illustrative

problem at the end of this chapter provides an example of a decision table.

OML has the following semantic requirements:

"* All analysis object names must be unique. This requirement was levied to simplify the

process of transforming the format of variable names in behaviors. Entities and events are

referenced and operated on in the behavior objects. The object names could be made unique

by the translation software, but this would make resolving all the references in the behaviors

more difficult. For example, if an entity and a store had identical names, the translation

software would assign a unique name to each object. While translating the behaviors, the

translation software would have to transform the references to objects by their context, or

rely on human intervention whenever a name could map to more than one possible unique

name.

"* An entity object's range field defines the attribute's legal range of values. This requirement

is needed for static and dynamic constraint checking, and to assure that the state-space is

fully defined.

"* The first state in the OML specification is assumed to be the start state. Rather than

providing additional syntax to specify a start state, we felt that this positional notation

would be a natural representation of the start state. A provision needs to be included in the

requirements elicitation tool to identify an initial state.

"* The initial values assigned to all entity attributes must satisfy the state space of the initial

state. In a state-based model, initial values must be defined when specifying entities. These

initial values must be in the domain of the start state (the first state specified). When the

specification is executed, the initial state space is verified. Incorrect specification of initial
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values will cause a premature termination of execution. To keep the specification process

unambiguous, we intentionally omitted any mechanism for defining default values.

"* The data variables used in the expressions and statements in behavior objects must be at-

tributes of entity or flow objects. The entity attributes must be fully referenced by giving both

the object name and the attribute name (e.g., object-name.attribute-name). The arguments

used in defining each state's state-space must refer to existing entity attributes. A fully

specified system will have its state-space defined. The state-space is described in terms of the

objects in the state-space and the values of those objects that are pertinent to any particular

state in the system. This requirement merely states that the specifier must declare all the

objects on which any state in the system depends in order to declare the state-spaces of the

individual states. Therefore, all events and entities should be defined prior to states and

behaviors so that state transitions defined in the behaviors can be made based on objects

that exist.

"* Each state's state-space definition must include the value or range of values of all object

attributes that are important to the state. OML has no implicit means of including values

for entity attributes in a state-space. Therefore, all objects required to have certain values

must be included in the state-space definition of the state using OML expressions and "dot"

notation. Because the state-space is verified each time the state is entered, this requirement

is useful to verify that events and behaviors that modify the entity values are performed in a

manner that is consistent with each state's specified state-space.

"* The key and order attributes only apply to sequence-natured stores. Because sets are un-

ordered groupings that have no duplicate members, key (the field the store is ordered on) and

order (ascending or descending) are meaningless (and therefore ignored) during the transla-

tion of set-natured stores. A more thorough discussion of this feature of Stores is given in

Chapter V, Section 5.4.8.
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"* A flow-object's flow-data attribute requires the name of the entity class of the data that will be

carried by the flow-object. This provides the translation software with an entity class (that

indicates the type of data the flow will carry) to instantiate when creating the flow-object .

"* External events must be associated with a behavior object to cause a change in state-space

object values. External events represent changes in the real-world state space (caused by

objects external to the modeled system) that the system must detect. The behavior associated

with an external event changes the values of entity-attributes causing a change in the system's

state space.

"* The ICO association used in relation tables is reserved for relationships between a process,

state, or external event and its behavior. ICO allows the translation software to match the

appropriate object with its behavior to compensate for the elimination of referential attributes

from the object definitions.

"* The event field in behavior objects will only be used by state behaviors and control process

behaviors. External event behaviors cannot specify next events. State and control-process

behaviors contain information that tells the control architecture what state or process should

be executed next. These are the only behaviors modeled in OML specifications that have

controlling characteristics, because they must model all the decision-making capability of

a state or control process. All other behaviors model transformational activities only and

cannot contain the directional capability that is modeled by the event field.

"* If multiple behaviors are associated with state objects, they must be listed in order of exe-

cution in the relation table. Each behavior will be executed in this order and the last state

behavior should specify a next event. If the "do" activity of a state requires that a series of

transformations occur prior to the execution of a state transition, this can be modeled using

multiple activities. Because the control architecture cannot yet deal with multiple events at

one time, we had to restrict the number of events that were returned to the controlling func-
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tion. Events cause a change in the flow of control. The controlling function of the simulation

routine assumes that a state transition is being made. No facility exists for the controlling

function to recognize a nested state or to determine whether it should return to a previous

state after several transitions.

" All external events, processes, and states must have behavior objects. These objects explicitly

state what actions should occur during a state or process, or what state-space attributes

change as the result of an external event.

"* Set operations have been incorporated into OML. In the following discussion, S and X are

sets and x is an element of a set:

- The set-diff operation requires two arguments, both of which are sets (e.g., S set-diff X).

This operation removes the elements of the second argument from the first argument.

- The union operation requires the first argument to be a set and the second argument to

be an element (e.g., S union x). This operation adds the second argument to the first

argument.

- The in operation requires the first argument to be an element and the second argument

to be a set (e.g., x in S). This operation returns true if the first argument is in the second

argument.

- The getitem command locates a specific item in a store and allows the item to be modi-

fied, but does not remove the item from the store.

- The getset command returns a set of items in a store but does not remove the set from

the store.

4.4 Composing an OML Specification from an Informal Model

4.4.1 How to build a specification. In order to represent a problem in an OML specification,

the user must have already abstracted the problem using informal analysis models. Frequently,
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when analyzing a problem, all three informal models (entity relationship, state transition, and data

flow models) are needed to capture all of the information required to solve a problem. However,

for some applications, it. may not be necessary to use all three models. For example, it may be

possible to fully specify a problem by only using two of the three informal models. As discussed

in Section 4.5.1, we were able to completely model the Home Heater System Problem by only

using ERMs and STMs. Similarly, our analysis of the Library System Problem (Section 4.5.2) only

required us to develop an ERM and a DFM.

The order in which these models are created is influenced by different modeling approaches.

The functional (structured analysis) approach, as described by Yourdon (29), places primary em-

phasis on the functionality of the system. Using this approach, DFDs are created first, followed

by STMs, and then ERMs. The object-oriented modeling approach presented by Rumbaugh (23),

places more emphasis on first identifying the objects in the application domain and then defining

the functions that act on those objects (23:7). Using this methodology, ERMs (object models as

per Rumbaugh) are created first, followed by STMs (dynamic models), and finally DFMs (func-

tional models). We strongly advocate Lhe object-oriented approach to modeling a system. An

object-oriented description of the objects and relationships in a system is very useful for modeling

real world concepts and improving understanding. The reader is referred to Rumbaugh's text (23)

on object-oriented analysis and design or Yourdon's text (29) on structured analysis for guidance

in developing these models.

It is also important to understand how the three models interrelate. The ERM forms the

groundwork for the other two models. Therefore, the STM and DFM are related to the ERM and

each other in the following ways:

o The activities and actions of an STM are represented as processes in the DFM.

e Flow objects in the DFM correspond to entity objects in the ERM. (23:179)

o State and process behaviors only use entity attributes defined in the ERM.
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"* The STM shows the sequence in which processes are performed. (23:138-139)

"* The entities in the ERM become stores in the STM.

"* Control flows in the DFM are represented as events in the STM.

"* Processes accept and send untity classes defined in the ERM. (24:97)

Until the elicitation tool is developed, OML specifications must be manually generated.

Therefore, the development of OML specifications is of interest. Although there are no restrictions

on how OML specifications can be created, we recommend that the developer begin by specifying

all data objects. In an object-oriented decomposition, these objects will be modeled by ERMs. If a

functional approach is used, this implies that the data described in a DFM and its accompanying

data dictionary should be represented first. It is important to represent data cbjects first since state

descriptions and data transformations are meaningless unless there are objects to be manipulated.

Once the data objects have been defined, the order in which other OML objects are created is not

critical.

Since OML specifications will be generated by a requirements elicitation tool, the following

discussion is intended to provide guidance in its development. The syntax and semantics of OML

are specified in Appendix A.

"* The elicitation tool should save information in any convenient form and should be capable of

generating an OML text file. The OML specification is simply a flat file representation of the

informal analysis models.

"* Instantiate all Entity and Relationship objects necessary for representing the problem's ERM.

The user can create an Entity class (set of entity instances) or an Entity Instance. The user

can then define attributes to dt *ibe the entities. Every attribute must be given a range

of valid values and an initial value. Whether these values are defined in an Entity class,

in an Entity instance, or in a combination of both is up to the user. Once the Entities and
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Relationships have been created, then create a Relation-Table object and add the relationships

between these objects into the table. These relationships are bidirectional.

"* Represent the STM in OML. First, define the State objects in the system. The state's state-

space attribute must define the values or ranges of all important entity-object attributes which

characterize the state. These attributes must be referred to by their full name. For example,

the Status attribute of a Motor entity instance would be referenced by motor.status. After

defining States, create the Events which cause a transition between two States. Events, by

definition, are unidirectional. Next, create the Behaviors associated with each State. When

state behaviors are being described, a next event must be identified with each control path

of the behavior. This is necessary to direct the sequencing of states. Variable names used

in behavior descriptions must exist as Entity attributes. Once these three object types have

been defined, add entries into the Relation-Table to associate all the objects (i.e., relate states

with events, and states with behaviors).

"* Represent the DFM in OML. Objects should be created in the following order: Process

objects, Flow objects, Entity objects, Store objects. Process objects are characterized by

their behavior. Therefore, Behavior objects must be created and associated with a Process

object in the Relation-Table. Flow objects are characterized by the data (entities) they

transfer. Accordingly, associations must be entered into the Relation-Table to relate Flows

with Entities. Stores are represented by a set or sequence of Entities. For this reason, Store

objects must indicate whether ordering is important, and if so, define a key to sort on.

"* Save and compile the file. Before a file can be compiled, the REFINE environment must be

running and the translation software must be loaded into the REFINE environment. Details

on starting REFINE and loading the translation software are included in Appendix F. To

parse an OML specification, type the following command at the REFINE prompt:
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(parse-file(your-file-filename,
false,
find-object( 're: :grammar, 'oml),
find-object('re: :grammar, 'oml),
find-package("RU") ) )

The next section discusses how two sample problems were implemented in the Object Modeling

Language.

4.5 Example Problems

Chapter III defined the mapping of informal model elements into OML objects. Previous

sections of this chapter defined the syntax and semantics of OML and also the process for creating

an OML specification. This section implements two sample problems in OML. They were chosen

for the following reasons:

1. To validate the effectiveness of OML as a specification language.

2. To serve as an example of how a problem is specified in OML.

Testing the ability and flexibility of OML to represent different types of problems is one way of

validating the Object Modeling Language. Additionally, since the OML specification will be created

by an automated tool, the following problems serve as examples of the type of output the tool must

be capable of generating.

The first problem, the Home Heater System, is a state-based problem and is conveniently

modeled using ERMs and STMs. The second problem is the Library System which is a static,

data storage problem and is represented by ERMs and DFMs. Because of their differing nature,

these problems were chosen to test the ability of OML to represent both dynamic and static

oriented problems. Both problems were taken from the Fourth International Workshop on Software

Specifications and Design (18).

4.5.1 The Home Heater System Problem. The Home Heater problem can be accurately

specified by an Entity Relationship Model and a State Transition Model. A Data Flow Model
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can also be used, however in this case, it only represents redundant information. The complete

problem statement, an analysis of this problem, and the complete OML specification are provided

in Appendix D. With some modifications, the state transition and entity relationship models

developed by Blankenship are used for this analysis (6:Appendix C). Regardless of whether the

specifier chooses to analyze this problem in an object-oriented or functional fashion, the problem

can be easily translated into OML.

The Heater problem describes the furnace system components and the sequence of control

events necessary for regulating the air temperature of a home. When specifying almost any problem,

the ERM should first be translated into OML. Figure 9 depicts the entity relationship model for

the Heater problem.

Begin by converting the entities in the ERM into OML entity objects. The following example

converts the OIL-VALVE and WATER-VALVE entities into OML entity objects. The two valves are

grouped under a general class of valves. This is done by creating a VALVE object class and by

making the OIL-VALVE and the WATER-VALVE instances of the VALVE object. In this case, the OIL-

VALVE "is a" (instance of) VALVE and the WATER-VALVE "is a" (instance of) VALVE. This approach

is not necessary for specifying this problem; however, we've modeled the valves in this manner to

demonstrate how object classes and instances can be created.

As defined in the OML grammar, two types of entity objects can be instantiated: entity

classes and entity instances. The user has the freedom to specify any attributes which define that

object. Attributes defined in entity class objects are inherited by all subtypes of that class. If

attributes are desired at the class level, they can be specified either by a full attribute definition, or

by an abbreviated attribute definition. A full attribute definition requires the attribute's name and

type, its range of legal values, and its initial value to be declared. An abbreviated definition can be

used in the class definition by declaring the attribute's name, type, and range of legal values. In

the second case, the initial value is specified when the object instance is created. Attributes can be
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declared as any of the following types: integer, real, boolean, string, set, or sequence. The ranges

can be specified either by enumerating each possible value or by giving a start value and an end

value. Ranges are not required for boolean or string type attributes.

For this example, a valve class and two valve instances must be created. The OML code that

corresponds to these objects is:

VALVE class-of entity
type: external

parts
status symbol range {open, closed}

OIL-VALVE instance-of VALVE

values
status : closed

WATER-VALVE instance-of VALVE
values
status : closed

Since both valves have a status attribute, we chose to declare the status attribute in the class

declaration and to define initial values at each instance declaration. As another option, since the

OIL-VALVE and WATER-VALVE have the same initial status, the initial value can be defined in the

class definition as shown below.

VALVE class-of entity
type: external

parts
status : symbol range {open, closed} init-val closed

OIL-VALVE instance-of VALVE

WATER-VALVE instance-of VALVE

Once all the Entity objects are created, the next step is to create the Relationship objects which

relate two entities together. Referring to Figure 9, both valves are related to the controller object by

a POSITIONS relationship. Since the definition of a Relationship object does not force its coupling

to any specific entity objects, the same POSITIONS relationship can be used to relate both the

OIL-VALVE and the WATER-VALVE to the CONTROLLER. Thus, the OML code which models this

relationship is:
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POSITIONS instance-of relationship
type : general
cardinality : 1-1

The remaining relationships are created in a similar manner. The POSITIONS relationship object and

the VALVE objects have not yet been associated together in the OML file. Associations between

objects are captured in a Relation-Table. Once the relationship objects are created, the entity

objects and relationship objects should be associated together in a Relation-Table. The VALVES

and CONTROLLER are associated together in the following abbreviated table:

TABLE1 instance-of relation-table
CONTROLLER, POSITIONS, VALVE;

CONTROLLER, MONITORS, MOTOR;

CONTROLLER, MONITORS, THERMOSTAT

Note that all rows of a relation-table end with a semicolon except for the last row. Once these

associations have been entered into the relation-table, all the objects necessary for representing an

ERM in OML have been defined. The next step is to specify the STM.

Figure 10 illustrates an STM for modeling the Heater problem. In order to represent an STM

in OML, State, Event, and Behavior objects must be created.

The State objects should be created first. The MOTOR-ON state of Figure 10 is provided here

as an example. This particular state assumes that certain entities such as air, motor, ignition, and

OIL-VALVE have been previously declared, since the state-space references the attributes of these

objects.

MOTOR-ON instance-of state
state-space : MASTER-SWITCH.status = on;

AIR.temp < CONTROLLER.tr - 2;
MOTOR.status - on;
MOTOR.speed = inadequate;
IGNITION.status = off;

OIL-VALVE.status = closed

The state-space attribute must define the values of all objects that characterize the system during

that state. Notice the state space is mrnoposed of previously defined entity attributes and specific

attribute values. The entity attributes should be referenced by using the "dot" notation which
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includes the instance-name and the attribute-name (e.g., MOTOR.status). Once the state objects

have been created, Event objects, which model the transitions from state to state, should be created.

Events that cause a transition between two states in the system are modeled as internal events.

There are two internal events which cause a transition out of the MOTOR-ON state. One event causes

a transition into the WATER-HEATING state and the other event results in a transition to the OFF

state. Event objects are very easy to create and we have named the first event, OIL-IGNITED. It is

created as follows:

OIL-IGNITED instance-of event
type : internal

The type attribute describes whether this event is from an internal source or an external

source. External events do not cause a transition between two states, but rather indicate that

certain external entities modeled by the system have changed value. To introduce changes to

objects in the system, external events have an associated behavior. All of the Event objects must

be associated with State objects, and Behavior objects (if applicable), in the Relation-Table.

In addition to its state-space attribute, a state is characterized by the activity being conducted

in that state. Such activities, which are captured in Behavior objects, should be created next. The

behavior associated with the MOTOR-ON state is defined by the FURNACE-MOTOR-ON object. This

behavior is described by a decision table as follows:

FURNACE-MOTOR-ON instance-of behavior
MOTOR.speed, dont-care, = adequate;

MASTER-SWITCH.status, = off, = on;

IGNITION.status, off, on;

OIL-VALVE.Status, closed, open;

MOTOR.status, off, on;
event, MASTER-SWITCH-OFF, OIL-IGNITED

Decision tables are broken down into four sections. The left-most column above the "- ->" defines

the pre-condition variables. The left-most column below the "- ->" defines the post-condition

variables. Each subsequent column stipulates one rule of the decision table. Each entry above the
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first rule (second column) is read as: If the master-switch is turned off then turn the ignition off,

close the OIL-VALVE, turn off the motor and then execute the MASTER-SWITCH-OFF event.

The dont-care symbol in the second column is an OML built-in value which is used to indicate

that the variable defined in the left hand column does not affect the first rule. All column entries

should be explicitly assigned some value or expression. This eliminates any potential ambiguity in

the behavior specification. Therefore, if the value of a variable does not affect the rule, then the

"dont-care" symbol should be entered. The Library problem will show how pre- and post-condition

statements can be used to describe a behavior object.

Finally, the behavior objects must be associated with the state or event objects they describe.

Since each state is characterized by an activity, a built-in association, ICO (is composed of), is

provided to relate these two objects. The ICO association also applies to external events and their

behaviors. Therefore, a State-Behavior association is entered into a Relation-Table as follows:

MOTOR-ON, ICO, FURNACE-MOTOR-ON;

These are the only types of objects and relationships needed to model the Heater Problem.

This problem also shows the general process needed for translating ERMs and STMs into OML.

The user's manual in Appendix F provides guidance on compiling, translating, and executing the

OML specification. The next section presents a different type of problem. It requires a more static

representation of objects that do not imply any sequencing of events.

4.5.2 The Library Problem. Unlike the Home Heater, the Library problem is not a state-

based problem. This problem specifies the legal transactions that staff and ordinary users can

perform, and the results of their actions. There are no sequencing requirements that stipulate an

ordering of the operations. Therefore, this problem can be satisfactorily specified using an ERM
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and a DFM. Since the translation of ERMs into an OML specification was discussed in the previous

section, the translation of the Library problem's ERM into OML will not be discussed here. A

complete description of the problem, its informal analysis, and the OML specification are provided

in Appendix E.

This section describes the translation of a DFM into an OML specification. Data Flow

Models typically do not provide any explicit notion of control structure. Without an explicit

control structure, it is only possible to translate the DFM into a group of loosely coupled process

objects with no particular execution sequence. That is, the individual processes are executable but

there is no process sequencing information. Therefore, a function must be added to the REFINE

executable specification which sequences and executes the processes. In the absence of control flow

and control process information, the translation software will need to insert control information

in the executable specification that locates a set of possible next processes and allows the user to

select from this set. In the Library problem, no control sequencing was specified and therefore a

group of loosely coupled objects will be created by the translation. A controlling function will be

added to the automatically generated REFINE specification to sequence the processes that were

defined in the specification and provide user interaction.

Appendix E contains all of the data flow diagrams necessary for analyzing this problem. The

Process objects should be translated into OML first; however, not all processes identified in the

DFDs will become process objects in OML. Only the leaf node processes need to be translated in

OML. The leaf node processes are the processes at the lowest level of each numbered bubble in

Figure 11. For example, processes 1, 2, and 3 can be further leveled into more detailed data flow

diagrams and therefore are not represented into OML. However, if a process at this level existed in

its most primitive stage (i.e. it could not be decomposed any further), then it would be translated

into OML. Continuing with this example, the decomposition of process 2 is shown in Figure 12.

Process 2 has been broken down into 11 distinct subprocesses. These processes are at their lowest
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level of decomposition and each of these processes must be represented in the OML specification.

Now-Trans UrNl-1

Actualy dispay atarrnent

Transaction-1 Tp ro-~esg

2 pTranbacobon-2
Handle

staff

Tigr sctlions USERS

Handle
BookhList h Book Ueb rS\ Transactions

BO KS Bo kUst"

n Actually display stateadTnts
In G-BOK-OU behavior object .

Figure 11. Library Problem Level 0 Data Flow Diagram

Using CHECK-OUT-BOOK (process 2.4) as an example, a process would be represented in OML as:

CHECK-OUT-BOOK instance-of Process

The declaration of the process object is not complete by itself. The behavior of the process

now needs to be defined. The activity associated with the CHECK-OUT-BOOK process is captured

in the CHECKING-BOOK-OUT behavior object.
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CHECKING-BOOK-OUT instance-of Behavior
exists (book) (book in BOOKS &

book.book-id = TRANSACTION-5.Book-Id &
book.status = available) &

exists (user) (user in USERS &
user.user-name = TRANSACTION-5. Borrower-Name &
user.book-count < 10)

UPDATED-BOOK-3 := getitem(book I book in BOOKS &
book.book-id = TRANSACTION-5.Book-id) &

UPDATED-BOOK-3.status := checked-out &
UPDATED-BOOK-3.current-borrower := TRANSACTION-5.Borrower-Name &
UPDATED-NAME-1 :i getitem(user I user in USERS &

user.user-name = TRANSACTION-5.Borrower-Name) &
UPDATED-NAME-i .book-count := UPDATED-NAME-I .book-count + 1
event none

In this case, a Pre-Post-Condition statement was used to model the intended behavior. Notice the

pre-condition and the post-condition are separated by the "- ->" symbol which indicates that if all

the pre-condition requirements are true, then the post-condition statements should be made true.

Additionally, the individual requirements of the pre-condition and post-condition are separated by

ampersands. All pre-condition requirements are boolean expressions and all post-condition require-

ments are statements. Boolean expressions can be expressed by traditional predicate operators (e.g.

<, >, = ... ) or by the set operators, in, forall, and exists, which test if an elemen'(s) is present

in a set of elements. Postcondition statements can be either assignment statements, such as used

above, or function calls. We found it necessary to provide a small set of built-in primitive object

operations to supplement the user-defined processes. The built-in functions allow the user to cre-

ate, destroy, and display objects. Example uses of these functions can be found in the complete

OML specification for the Library problem (see Appendix E). Whatever is inside the parenthesis

must be an existing entity or set of entities. Further, it is also important to note that expressions

and statements in a process behavior refer to a flow object's attributes (flow-name.attribute-name).

Preconditions test the current status of a flow's attributes, while post-conditions assign values to a

flow's attributes.
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Processes are also characterized by the data they operate on and the data they output.

Therefore, Flow objects and Store objects must be created to represent the incoming and outgoing

data. The Library problem contains a data store for all valid users and another data store for all

valid books. The following is a representation of the stores in OML:

USERS instance-of Store
nature set
content User

BOOKS instance-of Store
nature : set
content: Book

The nature attribute indicates whether the ordering of the objects in the store is important. If

ordering is important, then the nature attribute should be assigned the value sequence. The content

attribute specifies the type of data the store contains. This value should be an entity class-name.

The CHECK-OUT-BOOK process is associated with several flows. One of the flows carries data

from the CHECK-OUT-BOOK process to the data store, BOOKS. This flow represents the process

object updating the BOOKS data store by sending it a Book object. This flow is defined as follows:

UPDATED-BOOK-3 instance-of Flow
flow-link proc-store
flow-data : Book

The flow-link indicates the two types of objects that the flow object connects together. In this

case, the data flows from a process to a store. The flow-data attribute characterizes the type of

data that is carried by the flow object. The actual Book object tha, UPDATED-BOOK-3 carries is

not determined until the REFINE specification is executed.

Once all of the processes, behaviors, flows, and stores have been defined, the last requirement

is that they be associated together in a Relation-Table. This is accomplished in much the same

manner as discussed for the Heater problem. Similar to specifying the relationship between a state

and its behavior, processes are associated with behavior objects using the built-in ICO relationship.

Additionally, flow objects are used to associate processes, stores, and entities.
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4.6 Summary

The Object Modeling Language provides an intermediate format for translating an informal

specification into an executable software specification. This chapter has presented the rationale

for creating OML, the goals in defining OML's capabilities, the syntax and semantics of OML, an

evaluation of OML's capabilities, and two test cases to informally validate the effectiveness of OML

as a specification language.

The benefit of OML is clear. A problem specified in OML is now in a format which can

be quickly and automatically translated into an executable specification which can be used to

determine if the system requirements were properly captured in the specification. This capability

enables the user to quickly uncover potential problems and ambiguities in the specification at a

very early stage in the software development lifecycle which will save both time and money.

The next chapter will conclude our research by defining the process for converting OML

specifications into executable REFINE source code.

84



V. Executable OML Specifications

5.1 Introduction

The objective of this portion of our research was to develop and implement a process for

executing an OML specification. By observing the behavior of a specification, the specifier can

determine if his specification accurately captures his requirements. As mentioned in Chapter III

(see Figure 4), there are at least two ways to accomplish this objective. One way is to develop

a translation process which converts an OML specification into REFINE source code that can be

compiled and executed. The second method is to directly simulate the behavior of an OML specifi-

cation. The first method is similar to the translation of a source program into an executable form,

such as the compilation of an Ada program into executable object code. The second method is a

direct simulation which executes the source program based on the internal representation of the

parsed program. This method operates on an entire OML specification unit (i.e., process object,

state object, behavior object, etc.), but does not explicitly perform a translation. The only output

produced is the result of the behavior specified by the OML specification.

To simplify the process of translating OML specifications into an executable form, we trans-

lated the textual OML specification into an intermediate form - an Abstract Syntax Tree (AST).

Since we chose to develop our software in the REFINE environment, we used DIALECT, REFINE'S

compiler-building tool, to construct a compiler that produces an AST. REFINE's environment con-

tains many features for examining and manipulating ASTs. These features allowed us to more

quickly and easily develop the translation software for generating an executable specification. RE-

FINE's AST is useful to both behavior demonstration methods: compilable source code and simu-

lation. The AST assists in the translation by allowing us to group like data items together and to

associate objects that are loosely coupled in the OML specification. It also allows the translation

software to work with information that resides in several different sections of the specification rather

than requiring information to be operated on sequentially.
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Figure 13. Steps Required for Translation versus Simulation

Figure 13 compares the steps required to prepare an OML specification for simulation versus

the steps required to generate an executable REFINE specification.

1. The round-cornered rectangles depict executable programs that operate on other files to

construct new products:

"* The OML Parser transforms the textual OML specification into an Abstract Syntax Tree

(AST).

"* The Translation Executive, or translation software, operates on the AST and produces a

file that contains a compilable REFINE program that represents the parsed specification.
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e The Simulation Executive, yet to be developed, is a program that traverses the AST

and displays outputs on the terminal as though the specification were executing.

2. The rectangles depict files that are processed by the executable programs:

"* The OML Specification is produced by an elicitation tool (recommended method) or

manually (until the elicitation tool is developed) and represents a system that has been

analyzed and decomposed using informal software modeling techniques.

"* The REFINE Specification is an automatically generated, compilable REFINE program.

3. The ovals depict the machine representation of files that exist as objects in the REFINE

environment (object-base).

"* The Abstract Syntax Tree (AST) is produced when an OML specification file is parsed

into the REFINE environment.

"* The Executable Specification is generated when the REFINE Specification is compiled

and loaded into the REFINE environment.

Due to time constraints, we focused on the translation of OML specifications into executable REFINE

programs. As part of a previous project, we wrote a compiler that parses an Ada program into a

REFINE AST and translates the information in the AST into REFINE source code. The result was a

REFINE program that displayed behavior identical to the Ada program. Because we understood how

to perform the translation from OML to REFINE, we were able to focus on other problems associated

with the representation and interaction of informal model objects needed to develop an executable

specification. Also, because our goal was to create an executable specification, it appeared more

straightforward to associate informal model objects with REFINE program components than to

pursue the more abstract approach of behavior simulation directly from the AST. This aspect is

left for future exploration. The simulation approach may be more appropriate as the size of the

specification grows larger. Once a change or correction is made to the specification, the specification
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would only require re-parsing to simulate behavior, rather than re-parsing, re-translation, and re-

compilation as is needed to generate executable REFINE code.

Several steps are required to transform an OML specification into an executable forir that can

be used to verify correct behavior. All of these steps are performed by the translation software which

the user can initiate by entering one command and each step is outlined below. (See Appendix F

for a more detailed explanation of the steps involved in the automatic translation.)

1. First, OML specification is converted into an intermediate form, a REFINE AST, by parsing

the specification through a compiler generated using DIALECT. Section 5.2 contains a detailed

discussion of how this was done.

2. Second, the information in the AST is translated into a REFINE program that can be compiled

and executed.

3. Last, the specification is compiled and loaded into REFINE's environment and the user is

prompted to execute the specification to demonstrate its behavior. Testing the specification

is not entirely automatic. It requires the user to select desired paths through the executable

specification to simulate external inputs to the modeled system.

This chapter discusses compiler generation using DIALECT, the generation of REFINE source

code from the AST, the process required to generate executable specifications from state-based

models and process-based models, and the REFINE construct that each object in the Unified Ab-

stract Model (UAM) is translated into.

5.2 OML Compiler Generation

A compiler was needed to transform textual OML specifications into an intermediate form

suitable for automated translation. Using the Backus-Naur Format description of OML's grammar

in Appendix A, we generated a compiler using DIALECT, REFINE's formal language manipulation

tool. In order to build a compiler, DIALECT requires that a domain model and a grammar be
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constructed. The domain model describes the types of objects that make up OML. (Objects can be

thought of as nodes on a directed graph.) These objects are modeled as classes and subclasses of

one another to form an "is a" hierarchy. Using this hierarchy, the grammar can replace a "parent"

type with one of its subtypes when parsing an input stream. Objects can also be paired together

using REFINE maps. Object attributes are created by pairing one object with another object.

Defining an object's attributes is equivalent to building an "is composed of" relationship. (Maps

equate to the arcs in a directed graph.) A grammar defines for DIALECT how the objects in the

domain model are composed into a language. That is, the grammar identifies how objects and

punctuation can be grouped together into sentences. As the compiler parses a file, it identifies

objects in the domain, and builds a parse tree based on the maps defined in the domain model and

the rules (productions) contained in the grammar. Diagrams of the OML domain model are found

in Appendix C. We used the standard lexical analyzer provided with DIALECT to parse the input.

OML did not require us to customize the parser or build our own AST-building routines.

We felt that incorporating an Ada-based Program Design Language (PDL) into OML would

give the specifier more flexibility in describing behaviors. A compiler for a subset of Ada that could

serve as a PDL standard was written as a compiler class project. In addition to converting an Ada

program into an AST, the Ada PDL compiler also performs semantic checking. However, merging

one grammar into another was not a simple task. The OML and Ada PDL domain models and

grammars were compared to determine what common structures had to be developed. Common

structures were required because both Ada PDL and OML use the same mathematical expressions.

DIALECT has a mechanism for disambiguating a grammar by specifying the precedence of operators

in expressions. However, the precedence definition can only apply to one REFINE object class.

Therefore, all the mathematical expressions for both Ada PDL and OML had to be represented

with a single parent object class. All other objects in the domain models were made unique to

either Ada PDL or OML. The Ada PDL was written to be stand-alone. OML was then structured
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to inherit all the grammar productions (rules) from the Ada PDL grammar 1. Care had to be taken

when assigning names to objects and maps in both the Ada PDL and the OML domain models to

ensure that nothing was redefined or omitted. If Ada PDL and OML both have an object class

or a map in their domain models named X, REFINE will use the definition of X that is compiled

and loaded last. That is, it will over-write any existing definition with the same name. Should this

occur in the definition of a map, the "is composed of" relationship created could be quite different

from the one that should have been made. Similarly, if like-named objects have been placed in both

the Ada PDL and OML domain models, productions for these objects should only be defined in

one of the languages' grammar. If Ada PDL and OML both define a production (a grammar rule)

for the same object, only OML's production will be used. This is because DIALECT will only copy

productions from an inherited grammar (Ada PDL) that do not exist in the inheriting grammar

(OML).

The two grammars were successfully merged, but there was insufficient time remaining to

update the Ada PDL semantic-checking and translation software to reflect the extensive changes

made to the names in the Ada PDL domain model. Semantic checks need to be created to ensure

that attribute names are properly converted to the correct REFINE syntactic form, and that branch-

ing (outside of the specified behavior) is prohibited. Further research is required to determine how

constraints are applicable to behaviors specified using PDL, and if appropriate, how they should be

applied. A detailed discussion of constraints can be found in Section 5.4.10. The domain models

and grammars can be found in Appendix B, Sections B.1 and B.2, respectively. The OML domain

model and grammar that do not incorporate Ada PDL are located in Appendix A, Section A.3 and

1This may seem odd at first, because it implies that Ada PDL is at a higher level than OML. But we did so
because Ada PDL contains a more extensive description of expression objects. DIALECT was designed to allow
multiple dialects of a language. The most general case of the language is created with its own grammar. Each
variant of this language can be created by building a grammar that has productions expressing only the variations
needed for the dialect and inheriting the rest of the language's productions from the general case. The inherits-from
command causes DIALECT to copy only the productions from the inherited grammar with left-hand-sides not already
defined in the inheriting grammar. The variant language's grammar must also include any precedences, start-classes,
or other information that is necessary for the grammar, because these things are not inherited from the general case.
Because OML objects were the highest level objects in our model, and because lower level expression objects were
shared to allow the precedence rules to disambiguate both the Ada PDL and OML grammars, Ada PDL was made
the generalized case.
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Section A.4, respectively. For further information on using DIALECT to generate a compiler, see

(21).

5.3 Ezecutable Specification Methodology

Before describing how each OML object is translated into REFINE, we will describe the

methodology used to compose the OML objects into an executable REFINE specification, that is, a

REFINE program. This should give the reader a better understanding of how all the OML objects

interact with each other to produce an executable specification. Also, this should allow the reader

to understand why each object was translated in the chosen manner.

OML specifications are translated into a group of REFINE data definitions and functions that

represent the objects in the specification. These objects, however, do not create an executable

specification, because no top-level control module is specified in a DFM or an STM. Therefore,

the translation software also inserts one of two different controlling functions into the executable

specification. The controlling function for state-based models directs the executable specification's

program flow based on events that occur. The controlling function for process-based models selects

the next process to execute, based on which data flow objects have valid information in them. The

translation software determines which function to insert into the executable specification based on

the types of objects in the OML specification. Currently, a controlling function does not exist for

specifications that contain both process- and state-based models simultaneously. The integration of

both of these models into the same executable specification needs to be developed in future research.

Regardless of which controlling function is added, the controlling function is named "sim" and the

specification is executed by typing "(sim)" at the REFINE prompt. First, the execution of state-

based models will be discussed.

5.3.1 State-Based Model Execution. State-based models are typically composed of entity

objects, state objects, event objects, and behavior objects (as well as relation tables). As alluded to
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in Table 4, state and behavior objects are converted into functions, entities are converted into object

classes and instances, and events are used to develop the sequencing of actions in the executable

specification. A controlling function is then added to sequence the execution of the state and

OML Object REFINE Construct

Entity Class Object Class and Variable Maps

Entity Instance Object Class and Object Instance

Relationship Not currently used or translated

State Function

External Event Symbols

Internal Event Used during behavior translation to locate the
next state, but not directly translated

Behavior Function

Process Function

Flow Object Instance

Store Variable (Representing a Set of Objects)

Relation Table Used during translation to associate related ob-

jects, but not directly translated

Table 4. Mapping OML Objects into REFINE Executable

behavior functions to produce an executable specification. Figure 14 illustrates the flow of control

as "sim" executes.

Upon translation, the name of the system's initial state is written into the controlling function.

The initial state is assumed to be the first state declared in the OML specification. The controlling

function first makes a call to the initial state function. The initial state function, as well as all state

functions, perform the following operations:

* It tests the system's current state-space against the state-space required for that state as

defined in the OML specification.
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_______________________ Calls SaIE~~
1. Tedtthe stants space of the system

Controlling_ Funcin against the reqwuired date space.

1. Execute initial state function 2. If valid then
< returns tuple> Return tuple=

<valid, [Ext Events]. [Event Beh]. [St-BehJ>
2. If valid state then

a) Display list of external events Returns/ 3. If invalid then
<user selects evenbt> TUPI Return tuple - <invalid, 1LI[. 11 1>

b) Execute behavior assocated
with the event

c) Execute behavior(s) associated
with current state
(returns next state name>

d) Execute function associated Iv n
with next state s3Fal

e) Return to step 2 1. Execute all rules whose preolnditons
Returns are satisfied.

3. If invalid state then 2. event field has a value specified thenDisplay and error mnessage and• .I vmfe mavleq•ildtethe current state space values return the name of the next stateassociated with that internal event.
Return = next state name

Displays System Information

Figure 14. State Based Model Execution Methodology

e If the state-space is valid, the function returns a tuple of information to the controlling

function. The tuple contains:

- a valid state-space flag,

- a sequence of external events that can occur during that state,

- a sequence of behaviors corresponding to the sequence of events, and

- a sequence of behaviors that characterize the current state.

This tuple is used by the controlling function to direct the sequencing of actions.
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* If the state-space is invalid, the tuple is assigned an invalid flag and three empty sequences,

and the tuple is returned to the controlling function.

If the tuple returned from the state function indicates the state-space is valid, the controlling

function next displays a list of external events that the user can choose from. By selecting an

external event, the executable specification is able to simulate the introduction of external events

into the system. Currently, handling multiple events and ranking events by priority is not supported,

but it could be added with little difficulty. The behavior associated with the selected event is then

executed, which modifies the value of specified objects.

The controlling function next executes the behavior functions associated with the current

state. These behaviors perform the same functions as external event behaviors; however, these

behavior objects return the name of the next state. If the event field of the behavior object is

specified, then the behavior function returns the name of the next state to the controlling function.

The translation software uses the event name to search through the relation table to find the name of

the next state associated with the event. As a rule, external event behaviors cannot provide a value

in the event field since they only cause changes to state-space values. Therefore, no information is

returned from an event behavior function. The name of the next state is used to restart the same

cycle of events described above.

If at any time the system enters an invalid state, the executable specification lists the current

values of each object in the system and prompts the user to compare those values against the values

required for that state by the OML specification. This is very helpful in uncovering inconsistencies

and incompleteness in the user's informal specification.

5.3.2 Process-Based Model Execution. Automatically generating an executable specifica-

tion from process-oriented models proved to be more difficult than state-based models. The two

main reasons for this were the representation of flow information and the lack of control sequencing

information. The first problem was how to represent data flows in REFINE. We needed a naming
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convention to allow us to associate specific data on a flow with the data items manipulated by a

process' behavior and the data items contained in a store. We had two choices: to model the flows

implicitly by passing parameters between functions or to model them explicitly by declaring each

flow as a global variable. We chose to implement flows as global variables. This provided a fixed

set of names for the behaviors to reference and eliminated the need to parameterize the function

calls from processes to their respective behaviors. Further discussion of the pros and cons of these

two options is provided in Section 5.4.7. The second difficulty encountered was determining how to

develop an executable specification from an OML specification that does not contain any control

flow information. Lack of control information requires increased user interaction with the simula-

tion software. This discussion does not address how control process and control flows should be

integrated into the executable specification. This functionality must be addressed in future research

to make the translation software more robust.

Process models (DFMs) represented in OML are composed of process, flow, store, entity,

behavior (describing the process' actions), and relation table objects. Table 4, page 92, defined how

each of these types of objects are represented in the executable specification. A controlling function

is added during translation to compose these objects into an executable specification. Figure 15

illustrates the flow of control during execution. The controlling function begins by displaying a list

of processes to the user. The user selects one of these processes as the initial process which the

controller executes. Process objects are translated to perform two operations: Check to see if all

its internal in-flows are satisfied, or perform transformations on its in-flows and generate out-flows,

The controlling function passes a parameter (either "check" or "execute") to the process function

to indicate which operation the process function should perform.

If the controlling function selects "check", the process determines if all the in-flows from

internal sources have been provided to the process. If any of them are not defined, then the
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Figure 15. Process Oriented Model Execution Methodology

process will not have all the information it requires to execute and an invalid flag is returned to

the controlling function. This indicates the process is not eligible for execution 2 .

If the controlling function selects "execute", then the following operations are performed:

9 If any required in-flow from an external source is not available, the process function prompts

the user to enter the required data.

2 This may seem to constitute a restrictive user interface. Our goal was to a display a limited set of next available

processes for the user to select from during execution of the specification. We did this by locating the processes
whose internal in-flows were valid. This resulted in a specification that executes in the order that the flow-data is
generated. The execution would be more flexible if any process could be selected for execution at any time. If a
process does not have all its in-flows satisfied (whether internal or external), then the software would prompt the
user for the information. This feature would require the process-based controlling function to be restructured in
future research.
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"* Once all in-flows are satisfied, the behavior function associated with the process is executed.

Behavior functions perform the same operations as mentioned in the state-based model exe-

cution, except that process behaviors cannot cause any type of branching or calling to another

behavior function unless control information is specified.

"* After the in-flows to the process have been consumed, the data carried by the in-flows becomes

un-defined.

"* The process returns a tuple containing a valid process flag and either the name of the next

process to execute (if control information is provided in the process' behavior) or a list of

potential processes to execute based on the current state of the simulation.

The controlling function then repeats the same cycle of events over again by displaying the

list of processes that can be executed next. The next several sections provide details on how each

OML object is converted into REFINE or used by the translation software.

5.4 Translation

Similar to the tasks we performed when developing the UAM, we needed to evaluate the major

components of an executable program and ensure that the translation software built an executable

specification that correctly represented the OML specification. To develop an executable specifi-

cation, we needed to determine three major groups of information from the AST representation of

the OML specification:

"* the data architecture (data that needs to be manipulated),

"* the behavioral architecture (manipulations to perform on the data), and

"* the control architecture (the order in which manipulations occur).

The data architecture is determined from the OML entities, stores, and flows. These are passive

objects that describe the data or objects the specification works with. The behavioral architecture

97



is described by behaviors, processes, and states. These objects specify the operations that must

be performed on the data. The control architecture is derived by the translation software from

information found in events and flows. The translation software adds sequencing information to

each state and process that is used by a controlling function to order the execution of state and

process functions during the simulation. Depending on whether the OML specification contains

state-object descriptions or process-object descriptions, one of two different controlling functions are

added into the executable REFINE specification. Both controlling functions require user interaction

to direct certain steps during the execution of the specification. That is, a state-based model

requires the user to select the next external event from a set of external events to cause a state-

space change. Similarly, process-oriented models require the user to select the process to execute

next.

Table 4, page 92, summarized the general mapping of OML objects into executable REFINE

code. These REFINE objects and functions are composed together with a controlling function for

either a state-based or transaction-oriented model.

The correctness of the translation process was informally validated through the execution

of the two test cases: The Home Heater and the Library System problems. The results of their

execution clearly modeled the intended behavior of these systems. While it is not appropriate to

conclude that the translation process is totally correct, we have achieved a measure of success. Both

problems were successfully translated from their OML specifications into their associated executable

specifications. Testing showed that the executable specifications actually captured the behavior as

specified by their OML specifications. Care was taken to form general behavior translation routines

so that the translation software was not biased by our knowledge of the expected behaviors of

the two sample problems. In each case, we intentionally injected a controlling function that was

not present in the OML specification. This function directs the execution of the specification

based on selections made by the user. Therefore, based on the successful generation of executable
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specifications for these two problems, we can say that our translation process is correct for the two

instances in which it was tested. Our translation software did not convert constraints, relationship

objects, and Program Design Language behavior objects into the executable specification. In this

sense, the translation software is not complete. Hence, it is not fully validated. The process has been

validated, however, for entity objects, event objects, Decision-Table and Pre- and Post-Condition

behavior objects, flow objects, store objects, state objects, and process objects. The inclusion of

constraints and relationship objects in the translation will impact the behavior of the executable

specification requiring the translation to be re-validated.

OML can also support a more formal proof of correctness of the translation process. Two other

methods can be employed to perform a more extensive validation of the translation process. Vali-

dation can be performed by establishing an extensive set of test cases to test the translation's cor-

rectness and completeness. Because of OML's basis in first-order predicate logic, theorem-proving

is another validation technique that can be used. Future research will address these important

issues.

The details of each object's translation are discuss i in the following sections.

5.4.1 Entities. The Object Modeling Language allows the definition of both entity class

objects and entity instance objects in an OML specification. Both of these OML constructs are

used to define the data architecture of the system.

In the first case, entity classes are translated into their REFINE equivalent: object classes.

Additionally, the attributes associated with these entity class objects are translated into REFINE at-

tributes by declaring a REFINE variable that maps the object class to the data type of the attribute.

For example, consider the following entity class definition from the Home Heater specification (see

Appendix D):
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VALVE class-of entity
type : external

parts
status :symbol range {open, closed}

This entity class definition gets translated into the following REFINE constructs:

var VALVE : object-class subtype-of HOME-HEATER
var VALVE-STATUS: map (VALVE, symbol) = {Il}

The mapping of entity class objects into REFINE is relatively straightforward; however, there

are a few translation issues that need further explanation. Every entity class object has a required

type attribute that declares whether the entity is external or internal to the systuL. This type

attribute is not directly translated into REFINE code but is used by the translation software to

determine if a data flow comes from an internal or external source.

The REFINE attribute names are a concatenation of the object class name and the entity

attribute name. This convention was adopted to ensure that all attributes defined in the translated

code have unique names. If the attribute names are not unique, then only the last attribute

compiled by REFINE would be defined. All previous attribute definitions would be overwritten.

The VALVE object-class is a subtype-of HOME-HEATER. The name of the top level REFINE

object in any translated file is defined by the name of the specification. That is, the name following

the keyword specification at the top of the OML file becomes the top level object in the REFINE

executable specification. Therefore, all object-classes in the translated file are defined to be subtypes

of the top level object. This feature provides a convenient method to locate and manipulate all the

data objects associated with any given REFINE specification.

The range of legal attribute values is currently not translated into REFINE. Currently, this

information is not used but should be used to do static semantic checking on the values assigned

to the object attribute. Due to time constraints, code for semantic checking was not developed.

At least two options exist for performing the semantic checking. First, the semantic checking can

be performed by the elicitation tool that generates OML specifications to ensure that only valid
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OML specifications are provided to the translaLion software. The second option is to implement

the semantic checking as part of the translation process. Future research will address these issues.

The second type of OML entity objects are entity instances. Two types of entity instance

objects can be defined:

1. Instances of a user-defined class. The translation of instances of a user-defined class is a

three step process:

(a) Declare a variable of the object class type.

(b) Make an object of the object class type and assign it to the declared variable. This is

accomplished by using REFINE's make-object command.

(c) Define the attributes of the declared variable. This is done by using the set-attrs com-

mand.

All three steps can be included in one REFINE statement as shown below. The OIL-VALVE

entity instance from the Home Heater gets translated into the following REFINE code:

var OIL-VALVE : VALVE =
set-attrs(make-object('VALVE),

'name, '*OIL-VALVE,

'VALVE-STATUS, 'CLOSED)
The name attribute of the object is a REFINE built-in attribute and is needed to use several

of REFINE'S object manipulation functions. The name assigned to each object also must

be unique to other object names as well as unique from the name of the object's variable

declaration. Therefore, we defined each object's name attribute to be the variable name

preceded by an asterisk (*). This allows REFINE to distinguish between the actual object and

the name of the variable declaration.

2. Instances of OML's built-in entity class. This translation process is a combination of defining

an entity class and defining its instance. First, an object class is defined for each instance

of the built-in entity class, then an object is created to represent the entity instance. The

following is an example of this translation:
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As defined in the OML specification:

MASTER-SWITCH instance-of entity
type: external

parts
status: symbol range on, off init-val off

The translated REFINE source code consists of the class declaration:

var MASTER-SWITCH-ENTITY : object-class subtype-of HOME-HEATER
var MASTER-SWITCH-ENTITY-STATUS:

map(MASTER-SWITCH-ENTITY, symbol) = {fI}
followed by its instance declaration:

var MASTER-SWITCH: MASTER-SWITCH-ENTITY =
set-attrs(make-object('MASTER-SWITCH-ENTITY),

'name, '*MASTER-SWITCH,

'MASTER-SWITCH-ENTITY-STATUS, 'OFF)

To keep the object class name unique, we chose to define the object class name as the con-

catenation of the entity instance name with the word ENTITY.

5.4.2 Relationships. An Entity Relationship Model (ERM) illustrates the relationships

between entities in a system. OML allows the creation of three types of Association objects: Re-

lationships, Events, and Flows (see page 46). Relationship objects model the static relationships

between entities found in ERMs. We created these OML objects under the assumption that all

the objects contained in the informal models would be useful in OML. However, when developing

our translation software to create an executable specification, we did not find a need for Relation-

ship object information 3. We were able to develop what we believe is a generalized translation

process that does not use the information provided by Relationship objects. This is not to say

that Relationship objects are useless to OML. The two problems we used to test our system, the

Home Heater and Library problems, are limited in size and complexity. The implementation of

more difficult modeling problems in OML may display the applicability of Relationship objects for

generating an executable specification. It is not surprising that Relationship objects are not used in

3 This lack of usefulness was not the case with other association objects, or the built-in ICO relationship that occurs
in the Relation Table. The dynamic nature of Flows and Events makes this information indispensable in creating an
executable specification. The Relation Table lists all the user-defined Associations and the compositions (ICOs) of
State and Process objects with their Behavior objects. The table was also used extensively in the translation process
to locate objects that originally were referential attributes in the original OML architecture (see page 41).
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generating an executable (dynamic) specification. Relationship objects represent the relationships

in ERMs. These relationships describe the data structure of a system. Developing an executable

specification requires the modeling of the dynamic relationships and behavior of a system. REFINE

provides object definition and management functions. That is, we did not develop our own data

base to store and catalog objects. If we had, we may have found Relationship objects useful in

structuring the data base. For the present time, it appears reasonable that Relationship objects do

not affect the generation of an executable specification.

As a point for future research, Relationship objects may be useful for defining constraints

on the operations that one class of objects may perform on another class of objects. For example,

Figure 25, page 276, shows the ERM for the Library problem. A staff user can add/remove a

Book from the Library. If the Add relationship object was associated in the relation table with

the Adding Book behavior, then the Add relationship object could be used to constrain who is

allowed to add a book to the Library. In our analysis of the Library problem, the constraint that

only a staff user can add a book to the library was built into the pre-condition of the Adding Book

behavior object by using the in set-expression operator to see if the user was in the set of staff

users.

5.4.3 States. The translation software converts each OML State object into a REFINE func-

tion that performs the operations as described in Section 5.3.1, illustrated in Figure 14 (page 93).

In order to generate a REFINE function that accomplishes these tasks, the translation software

performs the following actions for each state object:

e By gathering information from the relation table, the translation software creates a sequence

of external event names applicable to the current state. It declares a local variable in the

REFINE state function, and assigns the event sequence to the variable.
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"* At the same time it creates a sequence of behaviors that correspond with the external event

sequence and assigns this sequence to another local variable in the REFINE state function.

"* It generates a sequence of behavior object names associated with the current state and assigns

that sequence to a third local variable in the REFINE state function.

"* It uses the state-space attribute defined for each state to create an if-then statement in the

function to test the system's state-space and return the appropriate tuple as mentioned above.

Two notable problems surfaced during this translation. First, the state-space attribute ref-

erences needed to be translated from "dot" notation to a form acceptable to REFINE. That is,

object attributes are written in the form of object-name.attribute-name. When referencing object

attributes, state-space constraints model the arguments of their expressions using "dot" notation.

This presents two problems. First, this is not the same notation that REFINE requires. REFINE

refers to an object's attribute as attribute-name(object-name). Second, the translation software

converts each object's attribute name into a unique attribute name. As a result, when converting

state-space constraints, the translation software must find the unique name of the attribute in the

attribute table (created when Entity objects were converted into REFINE, see Section 5.4.1), and

also correctly format the syntax for finding the attribute value. The second problem deals with

the semantic checking of the state-space attribute. The state-space attribute defines the required

values of all object attributes important to that state. A semantic check must be added to verify

that the values of the attributes, required by the state-space attribute, are within the legal range

of values specified by the entity object. This semantic checking can be performed by the elicitation

tool that generates the OML specification or by future modifications to the translation software

depending on whether static or dynamic constraint checking is desired.

5.4.4 Events. Events are critical to developing the control architecture of an executable

specification. OML allows the creation of both internal and external events, each of which is treated

diffeiently by the translation software.
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Internal events in OML are used to link one state of the system to another state and do not

possess any behavior. They are referenced in the event field of Behavior object rules to indicate

which state the system should transition to next when the behavior rule is executed. Therefore,

whenever an internal event object is referenced in a behavior object, the translation software uses

the relation table to find the name of the next state associated with that event. The discussion of

Behavior object translation will describe how the next state name is used.

External events differ from internal events in that they possess behavior which is used to

change the state-space of the system. They are not used to link two states of a system together,

but rather are used to specify a change in the values of state-space variables which in turn may allow

one or more activities to occur in the current state. (The activities of a state are specified in the

behavior object associated with the state). External events represent actions of objects that exist

externally to the system. Since these events need to come from external sources, this presented a

problem in developing an executable simulation. To satisfy this need, we added a user interaction

routine to the translated executable specification which interacts with the user each time the system

changes state. The interactive routine displays a list of external events that the user can select for

execution while in that state. Once the user selects an external event, the behavior associated with

that event is executed. The event's behavior is responsible for changing the state-space variables.

5.4.5 Behaviors. Behavior objects perform an integral part in defining the behavioral

architecture of an executable specification. Recall that Behavior objects in OML can be defined by

Decision Tables (DT), Pre-Post Conditions (PPC), and Ada PDL. Each of these types of Behavior

objects are represented very differently in OML, therefore each requires its own unique translation

process. However, the representation of both DTs and PPCs in an executable REFINE specification

are very similar, therefore the translation software performs the same types of operations on these

objects. In both cases, each PPC rule and each column in a DT is converted in the following

manne
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9 the pre-conditions of the rule, or the conditions of a decision table column, are located in the

AST and translated into REFINE,

* the post-conditions of the rule, or the actions of the DT column are translated and

* the rule's next event (if specified), or the column's next-event (if specified) is translated.

However, DTs and PPCs are converted into different REFINE constructs. Each DT Behavior object

is transformed into a REFINE function that consists of one REFINE "transform" construct for

each DT rule. Similarly, each PPC behavior object is converted into a REFINE function, but

instead consists of one "if-then" construct for each pre-post-condition rule. The rationale for

translating DTs and PPCs into different REFINE constructs is provided later in this section during

the discussion of problems encountered.

PDL Behavior objects are translated into a self-contained REFINE program. The translation

code for converting Ada PDL into REFINE is provided in Appendix C. However, the PDL translation

and semantic checking code (trans-pdl.re, sem.re, and tcheck.re) must be updated to reflect the

name changes made to PDL's domain model and grammar which were necessary to enable the PDL

and OML grammars to operate concurrently. The required modifications should be straightforward;

however, time constraints did not allow us to accomplish this task.

The REFINE functions that represent OML behaviors also contain information that helps the

controlling function order the execution of the state and behavior functions. The event information

in PPCs and DTs is optional. It allows the user to specify an internal event that will occur if that

rule or column in the behavior is executed. The translation software uses the name specified for the

event and searches the relation table to find the name of the next state associated with that event.

The name of this next state is then returned by the behavior function to the calling function. If an

event is not specified, then nothing will be returned. This indicates that user interaction will be

required for internal event selection as well as external events. State-based models should provide
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an evern for each rule to link the current state of the system to the desired next state. Process

based models will only provide events if control flows are specified in the system's DFM.

5.4.5.1 Problems Encountered. When developing the behavior translation code, the

following difficulties had to be resolved:

"* When referencing object attributes, behavior rules model the arguments of their expressions

and statements using the "dot" notation. Because REFINE does not access object attributes

as object-name.attribute-name, the names are converted to attribute-name(objeci-name) by

the translation software. This is accomplished using a look-up table that is created as entity

objects are translated and given unique names.

"* Originally, we designed the translation software to produce one REFINE "transform" construct

for each rule. We preferred to use transform constructs since they are better suited for

specifying what as opposed to how. A REFINE transform is structured as a pre-condition

predicate and a post-condition predicate separated by a transform symbol (e.g., P -- Q).

It is interpreted as meaning: if the initial state-space is P then make the final state-space Q.

It is similar to an "if-then" construct except that it does not explicitly state how to attain

the final state. In that same vein, the order of execution and the manner in which the

post-conditions are satisfied is determined at run-time by the REFINE compiler. Therefore,

it is more a specification of what to accomplish as opposed to an implementation procedure.

Since the order of execution cannot be determined by the user, all post-condition statements

must be independent of each other. Unfortunately, when testing the executable Library

specification, the order in which the post-conditions were executed was important for certain

Library functions. This seemingly non-deterministic behavior resulted in a run-time error

which was a direct result of the order in which the post-conditions were executed. To resolve

this problem, we modified the conversion of PPCs to generate one "if-then" construct for each

PPC rule.
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This problem also spurred further thought. Perhaps writing a PPC behavior specifica-

tion in OML that requires a specific order of execution is an abuse of the intent of a

pre-post-condition(22:3-159). PDL is a better choice for these kinds of behaviors. This being

the case, we submit that once PDL becomes fully integrated with OML, the translation of

PPCs into REFINE must revert back to using the transform construct.

5.4.6 Processes. Data Flow Models use processes to represent the transformation of data

or the actions performed on data in a system. A process in an informal model can be described by

the data it uses (an input flow), the data it produces (an output flow), and the activity (behavior)

of the process. The number of behaviors needed to describe the activity of a process depends on

the desired level of abstraction. DFMs provide an excellent overview of the important functional

components of a system but do not provide any details on the transformation of the data. These

are contained in the process specifications (p-specs) that accompany the models (29:68).

Similarly, OML process objects also represent data transformation functions and are trans-

lated into REFINE functions. However, OML process objects do not possess attributes to directly

model the data that they consume and produce, or their behavior. Instead, the relation table is

used to associate each process with its incoming data flows, its outgoing data flows, and its behav-

iors. The description of the transformations performed by the process are contained in its behavior

specifications.

Figure 15 (page 96) illustrates the operations that each process function in the executable

specification must perform. Each process is responsible for performing one of two different oper-

ations. The controlling function specifies which operation the process should perform by passing

a parameter to the process when it is called. One of a process' operations is to ensure that its

internal in-flows are defined and to return a valid/invalid flag to the controlling function. The

other operation requires the process to execute its behaviors, un-define each in-flow to the process

after it has been consumed (used) by the behavior, and return a list of processes that can be exe-
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cuted next to the controlling function. To support these operations, the translation software builds

into each process function several pieces of information. Each process maintains two sequences of

in-flow object names. One sequence contains the names of all in-flows to the process that come

from internal sources. The second sequence conitains the names of all in-flows that originate from

external sources. These sequences are used by the process function to verify that its in-flows have

valid data. If any internally generated flows do not have data in them, an invalid flag is set in the

return-tuple and the tuple is passed back to the controlling function. For a more detailed discus-

sion of the interaction between the process function and the control architecture see Section 5.3.2

(page 94).

However, before we could develop an automated process for translating OML processes into

REFINE functions that perform these operations, the following issues had to be resolved:

1. How to incorporate into the process function the flow objects that are pertinent to it,

2. How to find the processes that can be executed next,

3. How to validate the data in a flow object when the process is executed,

4. How each in-flow and out-flow will be referenced by the process' behavior, and

5. How a process will consume the data provided by an in-flow so that the same data will not

be erroneously used again.

Data flow objects pertinent to a process are found by looking up the process name in the

relation table. The position of the process name (From-Object or To-Object) is used to determine

if the flow carries data into or out of the process. Additionally, the process must provide to the

controlling function the name of a process, or a list of processes, that can be executed next. The

relation table is searched to find which processes can possibly be executed next. The To-Object

name is added to the set of next processes if the current process name is in the From-Object
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position and the Association-Object is a flow-object whose flow-link attribute is proc-proc4 . For

example, consider the following portion of the relation table taken from the Library Problem (See

Appendix E):

From-Object Association-Object To-Object

DETERMINE-STAFF-TRANS TRANSACTION-3 ADD-BOOK

ADD-BOOK UPDATED-BOOK-1 BOOKS

ADD-BOOK ICO ADDING-BOOK

Table 5. Excerpt from the Library Problem Relation Table

The in-flows to a process are determined by locating all the rows in the relation table with

the process name as the To-Object. For these rows, the Association-Object represents an in-flow to

the process. Similarly, the out-flows of a process are found by locating the entries where the process

name is the From-Object and the Association-Object is not IC 9. In these cases, the Association-

Object represents an out-flow. Each process "is composed of" at least one behavior and behaviors

are found by locating the entries where the process name is the From-Object and the Association-

Object is ICO. Using this approach, we can determine from the sample relation table illustrated

above that TRANSACTION-3 is an in-flow to process ADD-BOOK, UPDATED-BOOK-1 is an

out-flow from ADD-BOOK, and ADDING-BOOK is the behavior associated with ADD-BOOK.

The relation table also indicates that the ADD-BOOK process is a process that potentially can be

executed after the DETERMINE-STAFF-TRANS process.

4 There are five allowable values for a flow-link: proc-proc, proc-store, proc-entity, store-proc, entity-proc. These
identify the classes of OML objects that the flow connects: proc-proc indicates data flows from a process to a process,
proc-store indicates data flows from a process to a store, and so on for process to entity, store to process, and entity
to process, respectively. Process to entity flows are not modeled in OML because entities, in this case, are external
objects. Flows to these objects represent some form of output from the system and are modeled using display
statements in the process' behavior.
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The way in which we modeled flow objects assisted us in resolving the remaining issues.

Once a flow object related to a process has been found, the flow's flow-type attribute is checked to

determine

"* if the OML object associated with the process (the object connected to the process by the

flow) is internal or external to the system, and

"* if the associated object is a process.

The in-flows to a process are verified prior to the execution of the process' behavior to ensure the

behavior has all its required information. Flow objects are instances of the entity-class indicated

by the flow's flow-data attribute, and share the same name as the OML flow-object. This modeling

of flows benefited the translation of processes in the following ways:

1. It provided a way for processes to validate the contents of a flow object. Since flow objects

are modeled as objects in the executable specification, the validity of the data flow can be

determined by checking the flow's attributes. If the flow's attributes are undefined, then the

flow is invalid. If a flow's attributes are defined, then the flow is valid and the process can

consume the data.

2. It provided a naming convention to allow the specifier to address flow objects and their

attributes while specifying behaviors.

3. After the data from an in-flow is consumed by the process' behavior, the process can invalidate

the in-flow by un-defining the flow's attributes.

This translation methodology currently places the responsibility for using correct entity and

attribute names in each process behavior with the specifier. This methodology was adopted to

simplify the initial process-based translation and to allow us to focus on ways to compose the

processes into an executable specification. As research in this area continues, more intelligence can
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be added to the translation software or to the requirements elicitation tool to assist the specifier in

writing the specification.

An alternate methodology for translating process objects would be to parameterize the func-

tion calls the process function makes to its behavior functions. When the process is translated, it

would still check all the in-flow data to ensure they are valid, but these flows would also need to be

passed as parameters to the Behavior function. Additionally, the out-flow data would also have to

be received by the process from its behavior function. This methodology would result in increased

complexity in the translation of process and behavior objects. To automatically parameterize the

behavior function, the translation software would have to collect all the identifiers from the right-

hand-side of assignment statements and all the identifiers from expressions in the behavior rules,

and match their names to entity classes. These would form the in-flow parameters. A method would

also be needed to differentiate an in-flow containing data from a query to a store, which is translated

directly. The translation software would derive the out-flow parameters from the left-hand-side of

assignment statements. This leaves two remaining problems. First, parameters are passed in order.

To avoid run-time problems, the process would have to "know" the order of the in-flows expected

by the behavior function. Next, the information about the behavior must be known at the time

the process is translated. This could be established by translating the behavior first. However,

because the REFINE executable specification is produced sequentially, the information concerning

the parameter types and order would have to be added to the AST, so that the process translation

function would have access to the information later. By translating flow objects to global variables,

we eliminated the need for parameters and avoided the difficulties mentioned above.

5.4.7 Flows. The main purpose of data flows is to transfer data from one entity to another.

OML uses flows to capture data items that are produced in one object and consumed in another.

Flow-data associated with a flow has a data content, a data source type, and a data sink type

which can be modeled in the flow-object's specification. How and when flows will be produced and
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consumed is partially captured in the behavior specifications of the processes associated with the

flow. It is also partially dependent on the order of execution of the processes represented by the

DFM. Therefore, data flows in the OML specification have to be translated into a form that can

be checked for valid information and which can maintain the information until it is consumed by

another process. Flows can be modeled either implicitly or explicitly. Passing parameters between

process functions and behavior functions is equivalent to modeling flows implicitly. Alternately,

flows can be modeled explicitly as global objects (variables) that behavior functions can update as

necessary. (26:122) Three basic issues influenced our decision on how to translate flows:

1. We needed a method that would allow the translation software to identify the specific flow

object that a process' behavior was referencing.

2. We needed to ensure the data values that were produced and placed in flows would persist

until the controlling function called the process function that would consume the data. (An

associated concern was the development of a control architecture to execute process-oriented

specifications that would not generate an excessive number of nested subprogram calls.)

3. We needed a mechanism to indicate whether the data in the flow was valid.

A flow in an informal model can be characterized by the data it carries, and by its source and

destination endpoints (the process, store, or terminator that produced it and the process, store,

or terminator that will consume it). In OML, details about exactly what data values should be

placed in the flow are contained in the behavior specifications of the process with which the flow

is associated. Exact data values will usually not be known until run-time. For this reason OML's

flow objects have to provide a template for the data communicated between entities which can be

filled in as the specification executes.

An OML flow object is composed of a flow-data attribute and a flow-link attribute. The

flow-data attribute references an entity class. This attribute defines the type of data the flow will

carry when passing data from its source to its sink. We needed to decide which representation of

113



flows would be more suitable in REFINE: global variables in the REFINE executable specification,

or variables local to the appropriate process and behavior functions. Since OML processes "know"

what flows are associated with them, the processes can collect all of the data required to allow its

behavior to execute. Once collected, the process can verify the data is valid and pass the necessary

data to its behavior function. Using this method, the flow data can be local to a process. On the

other hand, because data can be passed from one process to several other processes (as well as

between the process and its behavior), and because only one of the receiving processes can execute

at one time, flows need to exist unaltered between one process and another. Therefore, although

data flows can be modeled either by local or global REFINE objects, global objects provide three

advantages:

1. Global objects provide a fixed group of names that can be used to reference the data produced

and consumed in behavior specifications.

2. They provide an object that can contain the information produced by one process until the

process that consumes it is executed, in essence maintaining the state of the system.

3. The validity of the data contained in global flow objects is easily determined by interrogating

the object's attributes. If the attributes are undefined, the data is invalid. Conversely, the

data is valid if the attributes are defined.

When an OML flow is translated into the REFINE specification, the flow is instantiated as an object

of the flow-data attribute type using the REFINE make-object command. During translation, only

the name attribute is given a value. The rest are left undefined. These attributes are set when the

specification is executed by behavior objects that produce data and fill out-flows to be consumed

by another process.

The flow-link attribute identifies the two types of objects that the flow connects. The specific

objects that a flow links together are listed in the relation table. Flows can only connect certain

combinations of objects. Legal links can be formed between the following object pairs: Process-
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Process, Process-Store, Process-Entity, Store-Process, and Entity-Process. These categories of

information are useful in the translation of processes and behaviors, but are not translated directly

into the REFINE specification. This information is used as follows:

"* Process-Process flows indicate that a global flow variable needs to be instantiated to pass

information between processes.

"* Process-Store flows also indicate a need for a global flow to be created. It is used to collect

data produced by a process that will be added to a store.

"* Process-Entity flows represent data that is displayed.

"* Storm-Process flows represent processes that retrieve information from a store. This type of

flow does not change the entity or the store object. For this reason, OML's basic expression

capability was enhanced to provide a group of function calls to perform operations on sets

(since stores are converted into sets) and to display information.

"* Entity-Process flows represent information that is input to a process from outside the system.

These flows are represented by global objects and indicate to the control architecture that

the user must be prompted to provide information to fill this flow.

5.4.8 Stores. OML stores are collections of entities designed to emulate the stores repre-

sented in Data Flow Models (DFM). Stores are defined by their nature, content, key, and order. The

nature of a store defines its ordered-ness. Set-natured stores are unordered and have no repeated el-

ements. Sequence-natured stores are ordered and may have repeating elements. Sequence-natured

stores are ordered on their key attribute, and are arranged in ascending or descending order based

on the store definition's order attribute. The content attribute of the store identifies the class of

instances that will be placed in the store. The content of all stores must be homogeneous, consistent

with accepted DFM rules'(23:127).
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The translation software currently does not implement all OML store features. All stores are

translated as sets regardless of the nature attribute specified. This implementation was selected

for two reasons.

1. Investigating how to develop and integrate the components of a process-oriented specification

into an executable specification was more important than investigating alternative implemen-

tations for stores. Therefore, we constrained the complexity of the translation problem by

focusing on sets. Because REFINE uses different instructions for set manipulation and se-

quence manipulation, new OML functions (in addition to union and set-diff) would need to

be added to OML to provide sequence-oriented operations. Alternatively, the existing opera-

tions could be translated in two different ways (for ordered and unordered stores), depending

on the context in which they are used. This would increase the complexity of the specifica-

tion's behavior translation routines. As the specification's behavior is being translated, the

translation software would have to determine the nature of the store being operated on and

select the appropriate store operation to insert. Additionally, new OML functions would have

to be provided, or automatically generated by the translation software, to insert items into

ordered stores as specified by the key attribute and ordering attribute.

2. Including the details about stores discussed above is beyond the scope of a specification tool.

The nature of a store and how it is accessed are implementation issues (29:154). The specifier

should be concerned about the existence of stores and their association with processes, but

not with the ordering of data in the store. Those factors should be considered later in the

design phase. Modeling stores in such great detail can be done, but detracts from the level

of abstraction, shifting focus from what should be done to how it should be done. It also

increases the complexity of the translation software without adding any tangible benefit from

a validation perspective.
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Modeling the activities that deal with stores was also a challenge. Several factors required

resolution:

1. Modeling data items as REFINE objects created problems with retrieving and modifying

objects in the stores (to avoid loss of information when updating an existing object). In

REFINE, the statement (A = B) is meaningless if A and B are objects. If the intention of the

statement (A = B) is to copy all of B's attribute information into A to make the two objects

identical, then it must be done explicitly. We devised a means for the translation software to

detect when a behavior is attempting to assign one object to another and created a library

function to copy one object's attributes into another. The object manipulation functions (see

Appendix C, Section C.2) written by Capt Mary Anne Randour have helped immensely with

the problem.

2. When generating the REFINE executable specification, we made all the objects in the data

architecture (entities, flows, and stores) passive. Because stores have no behavior, they cannot

add or delete information passed to them in a flow. Therefore, we needed to examine how

data would be added to, deleted from, or updated in a store. Two options existed:

(a) In a DFM, a read from a store is modeled as an unlabeled arc from the store to the

process (23:127). An addition to, deletion from, or update of an element in a store is

modeled as an arc from the process to the store labeled with the type of data it carries.

One method for modeling store-related activities is to model all the flows in OML as

they appear in the DFM. The control architecture will detect flows to and from stores,

and make the appropriate changes to the stores. This option requires the development of

a library of access operations to act on a store. The translation software would need to

be able to discern, from the structure of the behaviors, which operation (add, delete, or

update) needed to be performed on the store. The translation software would then have

to decide if the store-related action involved an in-flow or out-flow so that the control
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process could place the information from the store into the flow (or vice versa) at the

appropriate time. That is, if data is required to be retrieved from a store, then it is

associated with an in-flow to the process being modeled and must be retrieved prior to

the execution of the process' behavior.

(b) A second option is to add expressions to OML that allow a specifier to perform operations

on the stores directly. When behavior objects modify the contents of a store, flow

objects normally record this transfer. Process specifications (p-specs), a part of the

DFM, normally describe what action are performed on a store as well as describing the

behavior of the process. By adding set manipulation functions to OML, OML behavior

specifications can imitate the DFM p-spec by assigning data to its out-flows and then

using its out-flows and the set operations to modify the store. This relieves the control

architecture of the need to perform store operations. Using this scheme, flows exiting

from stores can be eliminated from the OML specification because the access to a store is

actually performed in the behavior. Flows to the store must still be modeled to provide

the translation software a variable name and association between the process and the

store.

We selected the second approach (option (b))to keep the control architecture as simple as possible.

To add an item to or delete an item from a store, the specifier uses union or set-diff. An item

can be retrieved from a store by using the getitem command and then modified by changing the

appropriate attribute values. This option also reduces the amount of information that needs to be

extracted from the AST and tabularized for use during behavior translation. These functions are

used when flows from a process to a store are being modeled. Flows must be specified in these

cases to provide a connection between the process and the store. Testing for the existence of an

item or condition in a store is accomplished using existential and universal quantification (exists

and foralo. In these cases, the flow doesn't need to be modeled because no information is actually

moving out of or into the store.
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5.4.9 Relation Table. Relation tables are a necessity when modeling a problem in OML.

Relation table objects are provided in OML to capture the associations between two objects in the

system. The information contained in these tables is frequently used by numerous functions in the

translation software, but relation tables are not directly converted into a REFINE construct during

the translation. Relation tables are used to support the translation of other OML objects into

REFINE and also to establish the sequencing of operations in the executable specification. Relation

tables were used to find the following information:

"* During the translation of each State object:

- The set of all external events applicable to the state

- The behaviors associated with each external event

- The behaviors associated with the state

"* When converting each Process object:

- The set of in-flows required for the process to execute

- The behaviors associated with the process

- The set of processes5 that can be executed after the current process has completed

execution

"* When translating behavior objects for state-based models, the next state to execute is deter-

mined from the relation table if an internal event name was provided as part of the behavior

object.

By localizing all object association information in one table and removing the need for ref-

erential attributes in objects, we have developed a modularized, decoupled representation of the

5 These processes are identified by determining what processes are connected to the out-flows. The information
that will be entered into the out-flows during execution is enter directly by the process' behavior. Hence, the
requirement for flow objects to have unique names. The out-flows themselves are not grouped and checked because
they will be checked as the next process' in-flows.
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objects in a system. From an object-oriented analysis and design point of view, this is very benefi-

cial. However, from an implementation point of view, this representation can result in a significant

degradation in the performance of the translation software. This representation requires the trans-

lation software to perform a significant amount of searching through the relation tables. As the

size of a relation table grows, so grows the searching time required to find the desired information

in the table. Therefore, a large relation table can result in a slower conversion process. A potential

solution to this problem is to create multiple tables that only hold specific information. This can be

accomplished by adding an attribute to relation table objects that indicates the type of associations

contained in that table. For example, an association-type attribute could be created which can have

the following values: flow, event, relationship, or ICO. A flow value for this attribute would indicate

the table contains associations between objects that are linked together by flow objects. A similar

meaning would apply for an event or relationship value. An ICO value would indicate the table

contains associations between an object and its behavior. Such a modification to relation table

objects should not be difficult to implement and should result in improved performance for the

translation software.

5.4.10 Constraints. The Object Modeling Language allows the specifier to express lim-

iting conditions on the objects in an OML specification. This is accomplished by instantiating

the constraints section of an OML object. OML's design was heavily influenced by RML (15).

Greenspan felt that a requirements language should allow the specifier to formally constraini the

system he was describing. To do so, RML was developed with an assertion class to describe con-

straints. OML has no assertion class, but does provide expressions that can be used to describe

constraints. What additional constraints should be described in the constraints portion of each

object? Constraints currently can describe situations that must exist in terms of entities and their

values. OML may need to be expanded to allow the specifier to describe timing dependencies and
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functional dependencies. Constraints can be applied to each OML object type in the following

manner:

"* Entities. Additional constraints on entities may be a duplication of the information al-

ready expressed in the entity's range. However, constraints could possibly be used to express

interrelationships that must hold between two or more entities.

"* Processes, States, and Behaviors. For these objects, constraints are a means of expressing

conditions that should remain invariant throughout the execution of the function representing

the object. When and how these constraints should be used requires further investigation.

"* Stores. Constraints on stores could be used to limit the size or data content of a store,

although the usefulness of such constraints requires further research.

"* Relationships. Defining constraints on relationships appears to be meaningless. However,

the actual relationship may be useful as a type of constraint. (See Section 5.4.2 for a complete

discussion.)

"* Events and Relation Tables. No meaningful constraints can be proposed for events or

relation tables that are not already provided by other objects in the system.

We recommend that constraint checking be performed on all passive objects (entities, flows,

and stores) both at translation time and during execution. Additionally, constraint checking on

dynamic objects (states, processes, and behaviors) should be performed prior to, and immediately

after execution of the object function during the executable simulation. These constraints can be

implemented as if-then test conditions in each function.

Some knowledge-based code generation and synthesis tools construct executable programs

from libraries of predefined components. These systems use constraints as a means of restricting

the number of library components that can be used in composing the solution to a specified problem.

Because OML translates the specification directly, and does not assemble library components, this
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use of constraints has a limited application. To do this at some future time would require the

definition of standardized interfaces and definitions of all REFINE specification objects so that a

library of components could be assembled. Then constraints could form heuristics that would limit

the search and matching functions that would select suitable behaviors from the library. Adding

this feature would expand the complexity of the behaviors that OML could model and reduce the

amount of work required in specifying behaviors afresh with each specification. Ultimately, domain

libraries could be developed containing the most basic building components that could be assembled

with new processes and states to define new systems.

5.5 The Value of Executing a Specification

Executing a specification can help the specifier answer scveral important questions, such as:

"* Does the specification contain any contradictions?

"* Does the specification allow undesirable side effects or unspecified (but desirable) circurn-

stances to exist?

"* Are user interaction functions or any other "helper" routines needed?

"* Are there any ambiguous requirements in the specification?

Executing the Home Heater and Library specifications helped us to locate several flaws in our

initial definitions of the two problems. The following are some of the problems that were uncovered

by executing the Home Heater specification:

o We discovered that the IDLE state was specified inconsistently. Our initial state-space def-

inition for the IDLE state required the air temperature to be greater than the temperature

which causes the heater motor to start (i.e., AIR.temp > CONTROLLER.tr - 2). This seemed

reasonable since the system should be idle if the air is warm enough. To enter the MOTOR-ON

state, the AIR.temp must be less than CONTROLLER.tr - 2. While in the MOTOR-ON, the
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MASTER-SWITCH-OFF event occurred, turning the MASTER-SWITCH off. This caused the sys-

tem to transition into the OFF state. When the system transitioned from the OFF state back

to the IDLE state, the AIR.temp had not changed. It was still less than CONTROLLER.tr - 2

and a state-space violation occurred.

"* A similar problem occurred with the HOLD state's state-space. Originally, we specified that

the water-valve should be opened in this state. Testing the specification revealed that this

was an incorrect requirement.

"* Developing the user interface to the executable specification showed that external events

needed to be specified to fully describe the connection of the system to its environment.

"* Execution showed that we were missing the ABNORMAL SHUTDOWN state. HOLD'S state-space

required both the fuel-flow and combustion sensors to be unsafe. However, the system could

enter into the HOLD state if the MASTER-SWITCH was turned off during the RUNNING state.

Thus, the system was in the HOLD state but the sensors were safe which caused an error to

be raised.

These are just a sample of the problems which were discovered by testing the executable REFINE

specification that was automatically generated from the OML Home Heater specification. Clearly,

executing the Home Heater specification enabled us to produce a more consistent, unambiguous,

and functionally correct specification.

Executing the Library specification also revealed many of the same types of problems men-

tioned above. However, it was also very useful in validating (in a limited sense) our translation

software. One particularly important discovery was the necessity for all post-conditions in a behav-

ior rule to be mutually independent. This requirement is very important since we originally designed

the translation software to convert each pre-post-condition rule into a REFINE transform construct.

The order in which the post-conditions of a REFINE transform are satisfied cannot be determined

by the specifier, therefore each post-condition statement must be independent. This issue surfaced
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when the executable specification terminated abnormally while executing the CHECKING-BOOK-

OUT function, because it tried to modify an attribute of an object that was not yet retrieved from

a store. In this case, executing the Library specification not only revealed problems with the Li-

brary requirements, but also exposed important performance restrictions regarding the translation

software.

5.6 Summary

This chapter has described the rationale used in constructing the software that automati-

cally translates an OML specification into an executable REFINE specification. The translation is

accomplished by a multi-step process:

1. The OML specification is parsed into a REFINE Abstract Syntax Tree (AST). This capabil-

ity was provided by developing OML's domain model and grammar, which interface with

DIALECT, REFINE'S compiler generation tool.

2. The OML objects contained in the AST are converted into equivalent6 REFINE constructs by

the translation software.

3. A controlling function is added to the converted file by the translation software to produce

an executable specification.

Converting a process-oriented informal specification into an executable specification proved

to , more difficult than converting a state-based informal model. This was primarily true because

the process-oriented specification did not include any control information. In spite of the difficul-

ties encountered, the translation of both the state-based and process-based models into executable

specifications was very successful. The executable specifications derived from the Home Heater

6 While there is no one-to-one mapping for all OML objects to REFINE objects, we feel that we have captured the
essential meaning of each particular OML object in REFINE and that, in this conceptual sense, the constructs are
equivalent. Translation of larger, more complex problem into OML should verify the correctness of our conceptual
mappings from OML to REFINE.
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and Library problems exposed several inconsistent and incorrect requirements in their respective

informal specifications. Further, the translation process is very simple to perform and easily accom-

modates re-translation of modified specifications. Upon discovering an error, an OML specification

can be corrected, and then converted to an executable specification with one command. From a

specifier's point of view, it was easy to focus on the specification alone and remain detached from

implementation issues. The Object Modeling Language and the translation software have shown

that the gap between informal and formal specifications can be spanned. The two techniqucs com-

plement each other: one aides the specifier in conceptualizing information, the other provides the

formality needed to remove ambiguity. Automation can assist the specifier in developing formal

specifications and maintaining the rigor necessary to build systems that meet these specifications.
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VI. Conclusions and Recommendations

6.1 Objectives and Results

The goal of this thesis was to develop a method for transforming the information contained

in informal software specifications into an executable formal specification that can be used to verify

expected system behavior and serve as a basis for formal software derivation.

This research has successfully accomplished this goal by developing a method for bridging

the gap between informal and formal specifications. By developing a method for translating an

informal specification into an executable formal specification, users, specifiers, and, developers can

take advantage of the benefits offered by formal specifications. One direct benefit of this research

is that it provides a method for revealing requirement errors at a very early stage in the software

development lifecycle. The following objectives were established to help us achieve our goal:

1. To establish a minimal set of constructs that represent the content and behavior of informal

analysis models, specifically Entity Relationship Models (ERM), Data Flow Models (DFM),

and State Transition Models (STM).

2. To develop a methodology for translating the information contained in these informal models

into a formal object-based language.

3. To develop a tool to translate formal, object-based specifications into an executable environ-

ment.

This research produced the following results which directly contributed to meeting our ob-

jectives:

1. The development of the Unified Abstract Model (UAM) to provide a unified representation

of entity relationship, state transition, and data flow models.

2. The development of the Object Modeling Language (OML) which directly models the objects

in the UAM and which has a formal language notation amenable to automatic translation.
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3. The development of a translation tool to convert an OML specification into an executable

specification.

We accomplished our first objective by defining the Unified Abstract Model (UAM) described

in Chapter III. The UAM was developed to provide a unified, object-oriented representation of

all the components (objects and attributes) necessary for modeling the information contained in

DFMs, STMs, and ERMs.

The Object Modeling Language (OML) defined in Chapter IV is the bridge that spans the

gap between informal and formal specifications. Our review of currently available specification

languages (see Chapter II) was intended to locate a specification language to support our Unified

Abstract Model. However, we did not find a specification language to directly and naturally

support the UAM. For this reason, we developed OML. OML directly supports the objects and

attributes defined in the UAM and provides a formal language notation that is easily parsed into

an Abstract Syntax Tree (AST) representation. Therefore, OML provides a structured notation

for naturally specifying informal specifications which is easily translated into a formal object-based

representation.

The translation software developed during this research successfully parses an OML specifi-

cation into an AST and then converts the information contained in the AST into an executable

REFINE specification. Through the execution of a specification, the user can now validate at a very

early stage of development, that his informal requirements specification correctly and unambigu-

ously captures his intentions. The translation software is described in Chapter V and is provided

in Appendix C.

Additionally, the REFINE Software Development Environment proved to be a very beneficial

development tool. DIALECT, REFINE's language manipulation tool, enabled us to quickly develop

a compiler for translating an OML specification into a REFINE AST. We believe that DIALECT was

easier to learn and understand than other popular compiler tools, such as Lex and YACC, because
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DIALECT'S syntax enabled the compiler software to very closely resemble the Backus Naur Format

description of the parsed language without requiring cryptic notations. Furthermore, REFINE's

high level constructs significantly simplified the amount of effort needed to convert the information

contained in the AST into an executable specification. For example, REFINE'S universal and exis-

tential quantification capabilities allowed us to perform operations over a group of objects without

requiring us to produce detailed code for searching the object-base.

6.2 Recommendations for Future Research

This thesis was very successful in defining and implementing the techniques required to trans-

late an informal software specification into a formal executable specification. This section offers

several recommendations for future research. They are categorized into three groups: improvements

to the existing translation tool, additions to the translation tool, and supporting research.

6.2.1 Improvements to the Existing Translation Tool.

" Augment the hierarchical structuring capabilities of OML. OML should be expanded to allow

it to model more complicated object hierarchies. For example, OML should be expanded to

allow the modeling of classes of classes for entity objects and to allow the definition of classes

for all other OML object types (e.g. classes of states, classes of processes, etc.). Additionally,

nesting of OML objects should be implemented to assist in modeling more complex problems.

" Take advantage of multiple relation tables to improve translation performance. Currently,

OML allows the specifier to define one or more relation tables. However, there is no mechanism

for knowing what kind of relationships are contained in each relation table. Multiple relation

tables that contain specific types of relationships can significantly improve the performance of

the translation software by reducing search time through the relation tables. This suggestion

is further discussed in Section 5.4.9. Other enhancements should be investigated to improve

the performance of the translation software.
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e Augment the translation software to sequence events based on priority. OML allows the user

to specify a priority attribute (optional) for each event object. The priority should be used to

determine the sequence in which events occur if more than one event is eligible for processing

at the same time. The priority attributes should be used during the translation to guide the

execution of events.

6.2.2 Additions to the Translation Tool.

e Define a controlling function for OML specifications that contain both state-based and process-

based information. Future research should investigate how state-based and process-based

information can be integrated together to develop one executable specification. This capa-

bility would be beneficial to Real-Time Structured Analysis (RTSA) which is a widely used

technique for specifying embedded computer systems. Currently, a different controlling func-

tion is added to the executable specification for state-based models and process-based models.

A third controlling function should be developed for cases when both state-based and process-

based information exist in the same OML specification. Additionally, while developing the

process translation routines, we noticed numerous instances where states and processes are

similar. It may be possible to combine state and process objects into one object, but a more

thorough analysis needs to be accomplished to evaluate all the side effects of such a funda-

mental change to the UAM and OML. If this combination is possible, then the two controlling

functions would have to be modified or merged together.

* Add semantic checking of OML specifications. Future research should determine if the

semantic checking should be performed by the translation software or by the elicitation tool.

Section 4.3 discussed the semantic requirements of an OML specification. Currently, OML

specifications are not checked for these semantic requirements. For example, entity objects

should be checked to ensure that they are assigned legal values (i.e. correct type and within

specified range).

129



"* Determine if OML should allow store objects to be specified as sequences. Currently, OML

allows the specifier to define the ordered-ness of a store object. Future research should

investigate whether a specification should stipulate whether or not the elements in a store are

ordered. This issue is discussed further in Section 5.4.8.

"* Fully incorporate PDL as an option for specifying behaviors. PDL is very important to OML

for allowing the realistic specification of continuous type behaviors. We have two suggestions

for accomplishing this task. Currently, the PDL provided in Appendix B is a subset of the Ada

language. We have integrated PDL's domain model and grammar in with OML. However,

further modification must be made the PDL semantic checking and translation software as

discussed in Section 5.4.5. Once PDL is fully implemented in OML, the translation of pre-

post-condition behaviors should revert back to a REFINE transform construct. As a second

option, we suggest that a subset of REFINE be used as the PDL standard instead of Ada

PDL. In this case, the PDL would already be executable in the REFINE environment. An

evaluation would need to be performed to determine the minimal, most useful constructs

required to fully specify behavior. The advantage of this approach is that REFINE is a wide-

spectrum language and can specify sequential behaviors (that pre-post-conditions cannot) in

more general terms than Ada.

"* Incorporate the translation of OML object constraints. OML allows constraints to be spec-

ified for each object. Future research should determine what the constraints section of each

OML object should be used for, and how the constraints should be translated into the exe-

cutable specification. Section 5.4.10 provides several suggestions concerning the application of

constraints for each OML object and how they could be handled by the translation software.

6.2.3 Supporting Research.

" Implement the direct simulation method for executing an OML specification. This thesis

identified two methods for executing an OML specification. The method we pursued was the
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translation of an OML specification into a REFINE specification (source code) which can be

compiled and executed in the REFINE environment. A major advantage of this method is

the REFINE specification can serve as a basis for formal software design. The second method

is to simulate the behavior of the OML specification by directly executing the information

contained in the AST. We recommend this approach be pursued in future research. The second

approach is more desirable for performance reasons. As the size of the OML specification

gets larger, it takes a longer amount of time to generate REFINE source code and compile

and load it than it would take to simply execute the AST. Further, this translation time also

affects the amount of time required to modify an OML specification and re-translate it into

an executable form. The direct simulation approach, however, does not produce a formal

specification, and therefore does not support continued development. Thus, both methods

have unique advantages and should be used to complement one another.

"* Implement more complex problems in OML. The Library and Home Heater problems im-

plemented in this thesis were limited in complexity. More complex test problems should be

implemented in OML to further test its ability to capture the information contained in infor-

mal models. Additionally, relationship objects (modeled in ERMs) were not used during the

translation of the Library and Home Heater problems into executable specifications. More

complicated test cases may help in revealing the role that relationship objects play in the

development of an executable specification.

"* Develop an elicitation tool to assist the specifier in constructing an OML specification. OML

enabled the translation of informal specifications into formal specifications to be automatable,

but further support is needed to make construction of an OML specification a realistic task.

This is an example of the need to formalize and automate the specification process as well as

the specification. (11:52) The practicality of OML for modeling larger problems will likely be

limited without the support of a front end tool. Further, an elicitation tool would consistently

131



develop a syntactically and semantically correct OML specification. Also, specifying a large

problem manually in OML would be very tedious and prone to error.

Incorporate knowledge-based techniques. Currently during execution, the specification pio-

vides very rudimentary information as to the source of the specification error. The executable

specification "knows" if a state-space is incorrect or if a process has no in-flow data to operate

on. However, it cannot tell the specifier how the error condition occurred. The specifier must

rely on the OML specification, the informal model documentation, and his own ability to

construct the path of change that led to the error. Valuable knowledge could be gained by

researching the development of rules or procedures that will aide the specifier in locating the

source of inconsistency in the specification. This idea could also be extended to include the

development of a static correctness check that would occur prior to translation and execution

of the specification.

9 Verifying correctness. We have concluded that the translation process we developed is correct

on the basis of testing. After developing the translation process, we tested and improved it

while working through the Home-Heater problem. The basic translation methodology also

worked for the Library problem. However, we had to expand the translation process to handle

specific process-based information. We believe these two problems are representative of the

type of information that the translation software will encounter. However, this does not verify

that the translation process will work well for any case. Research needs to be done to develop

a technique, possibly from graph theory, for verifying that the translation software does, in

fact, map enough essential ideas from OML to REFINE for the REFINE specification to be

considered a valid representation.
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6.3 Concluding Remarks.

Numerous past and current software development programs proclaim the need for software

cnginccrs to do a significantly better job cf requirements analysis and specification. The increasing

complexity of problems that software is being required to solve can only exacerbate the problems of

current trends in software development. This thesis has identified a means for attacking one of soft-

ware development's most difficult problems: correctly specifying software requirements. We have

developed a process for converting a user's informal specification into an executable specification.

By observing the behavior of an executable specification, developers can validate the accuracy of

informal specifications and discover requirements errors prior to software development. This early

discovery of errors will result in substantially lower software costs, decreased risk in development,

and significantly improved software systems.

Furthermore, the formal, executable specification can serve as a basis for formal software

design and thus further aid in the development of successful software systems. We have shown

that informal and formal methods are complementary in nature, and we have provided a means for

"bridging the gap" between them. The software engineering community must make the transition

to formal methods in order to meet the demands of software development in the 1990's and beyond.
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Appendix A. Summary of OML Syntax and Semantics

A.1 Syntax

A concise summary of OML syntax is given below using a slightly modified BNF notation.

Meta-symbols(unless quoted): <> ::= { >[] I

Reserved words are in bold face

Terminal symbols are un-delimited words

Symbols consisting of a string in angle brackets (e.g. < >) are nonterminals

Required punctuation is denoted by "double quotes"

[<symbol>] signifies zero or one occurrences of <symbol> (e.g. <symbol> is"optional")

{<symbol>} signifies zero or more occurrences of <symbol>

{ <symbol>}+ signifies one or more occurrences of <symbol>

1. Informal model

<informal-model>::=

specification <name>

{ <analysis-object>}+

2. Analysis Object

<analysis-object> ::= <class-definition> I <instance-definition>

<class-definition>:

< class-name> class-of entity

[parts <user-declared-attr> {";" <user-declared-attr>}]

(constraints

{<expression>}]
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<instance-definition>:

<object-name> instance-of

<instance-value>

[constraints

{<expression>}]

3. Instance Values

<instance-value>.

<entity-fact> I <process-fact> I <state-fact>

I <store-fact> I <relationship-fact> I <flow-fact>

I<event-fact> ]<relation-table> I <behavior-fact>

<entity-fact>

(entity type: (internal I external)

[parts <user-declared-attr> {";" <user-declared-attr>} ])

I ( <class-name> [values <user-defined-attr> {";" <user-defined-attr>}] )

<process-fact> ::= process

<state-fact> ::= state

state-space ":" <expression> {"," <expression>}

<store-fact> ::= store

nature ":" set I sequence

content ":" <class-name>

[key ":" <attribute-name>]

[order ":" ascending I descending]

<relationship-fact> ::= relationship

type ":" ico I isa I general

cardinality ":" 1-1 Imr-1 I 1-m I m-m
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<flow-fact> ::= flow

flow-link ":" proc-proc I proc-store I proc-entity

I store-proc I entity-proc

flow-data ":" <class-name> I <object-name>

<event-fact> ::= event

event-type ":" internal I external

[priority ":" integer-literal]

<relation-table> ::= relation-table

<object-name> "," <association-name> "," <object-name>

{ ";" <object-name> "," <association-name> "," <object-name>}

<association-name> ::= <object-name> I ICO I ISA

<behavior-fact> ::= behavior

<process-description-lang> I <pre-post-condition> I <decision-table>

<process-description-lang> <ada-program> 1

<pre-post-condition> ::=

<pre-condition> "-->" <post-condition> event <next-event>

{";" <pre-condition> "- ->" <post-condition> event <next-event>}

<pre-condition> ::= <expression> {"&" <expression>}

<post-condition> ::=

<assign-stmt> I <function-call>

{"&" <assign-stmt> I <function-call>}

<decision-table> ::=

< condition-row > {";" < condition-row >} "- ->"

1See Ada PDL syntax Appendix B
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[<action-row> { ";" <action-row>)]

event { "," <next-event>)+

<condition-row> ::=

<condition-variable> "," <condition-entry> {","<condition-entry>)

<action-row>::=

<action-variable> "," <action-value> {"," <action-value>}

<condition-entry> ::=

dont-care I <condition-value> I <condition-range>

<condition-variable> ::= <object-name> "." <attribute-name>

<action-variable> ::= <object-name> "." <attribute-name>

<condition-value> ::= <value>

<action-value> ::= <value>

<next-event> ::= none I <object-name>

<condition-range> ::=

<predicate-oper> <argument> {<arithmetic-oper> <argument>}

4. Expressions

<expression>

forall "(" <name> {","<name>} ")"

"(" <expression> {"&" <expression>} "=>" <expression> ")"

I exists "("<name> { ","<name> } ") "("<expression> { "&"<expression>) ")"

"("<expression>")"

not < expression>

<expression> <connective> <expression>
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S< condition>

true

<connective> and I or

<condition> ::= <term> <predicate-oper> <term>

<term> ::= <argument> {<arithmetic-oper> <argument>}

<p.:edicate-oper> ::= < >1 >= I <= I = I : Iin

<arithmetic-oper> ::= + - I div I * set-diff I union

<argument> <condition-variable> I <value> I <setbuilder>

<setbuilder> ::= "{" <name> "I" <expression> {"&" <expression>} "I"

<getset> ::= "getset" <setbuilder>

<getitem> ::= "getitem" "(" <setbuilder> ")"

5. Statements

< assign-stmt > ::= <action-variable> ":-" (<term> I <getset> I <getitem>)

< function-call > ::=

create "(" < object-name> ":" <class-name> ")"

I destroy "(" <object-name> ")"

display "(" <object-name> I <setbuilder> ")"

6. User-defined attributes and names

User defined attributes are identifiers introduced by the user:

<user-declared-attr> ::=

<attribute-name> ":" <unranged-attr> I

(<ranged-attr> range "{"<enumerated-range> I <real-range> [<integer-range> ")

[init-val <value> ]
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<user-defined-attr> ::= <attribute-name> ":" <value>

<unranged-attr> ::= boolean I string

<ranged-attr> ::= integer I real I symbol I set I sequence

<enumerated-range> ::= [<value> {"," <value>}+]

<real-range> ::= real-literal ".." real-literal

<integer-range> ::= integer-literal ".." integer-literal

7. Terminal symbol productions

<value>

integer-literal I boolean-literal real-literal

I string-literal I symbol-literal I set-literal [sequence-literal

<name> ::= string-literal

<attribute-name> ::= string-literal

<class-name> ::= string-literal

<object-name> ::= string-literal
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A.2 Semantics

This section defines the semantic requirements of OML.

1. General semantics.

* All analysis object names must be unique.

2. Entities.

"* An entity object's range field defines the attribute's legal range of values.

"* The initial values assigned to all entity attributes must satisfy the state space of the

initial state.

3. Processes.

9 None.

4. States.

"* The first state in the OML specification is assumed to be the start state.

"* The arguments used in defining the state space attribute must refer to existing entity

attributes.

"* The state space attribute must define the value or range of all object attributes that are

important to the state.

5. Stores.

* The key and order attributes only apply to sequence-natured stores.

6. Flows.

* The flow-data attribute requires the class-name of the data that will be carried by the

flow.

140



7. Events.

"* External events must be associated with a behavior object to cause a change in the

values of the state space objects.

"* External events represent the actions a user can take during a simulation.

8. Relation-Tables.

e The ICO association is reserved for associations between a process, state, or external

event and its corresponding behavior. While an ICO association object does not need

to be explicitly specified, the object-ICO-behavior entry must be made in the relation

table.

9. Behaviors.

"* Behaviors must be explicitly defined for all state, process, and external event objects.

"* The event field in behavior objects is only used by state behaviors and control process

behaviors. External event behaviors cannot specify next events.

"* If multiple behaviors are specified for one state, the state's behaviors must be listed in

order of execution in the relation table. Each behavior will be executed in this order,

and only the last state behavior should specify a next event.

"* The variables used in the expressions and statements of behavior descriptions must be

attributes of entity and flow objects. The entity attributes must be fully referenced by

giving both the object name and the attribute name (e.g., object-name.attribute-name).

10. Expressions.

In the following discussion, S and X are sets and x is an element of a set:

e The set-diff operation requires two arguments, both of which are sets (e.g. S set-diff

{x}). This operation removes the second argument from the first argument.
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"* The union operation requires the first argument to be a set and the second argument to

be an element (e.g. S union x). This operation adds the second argument to the first

argument.

"* The in operation requires the second argument to be a set. This operation checks to see

if the first argument is in the second argument.

"* The getitem command locates a specific item in a store and allows the item to be modi-

fied, but does not remove the item from the store.

"* The getset command locates a set of items in a store but does not remove the set from

the store.

A.3 OML Domain Model

The following figures show the "is a" hierarchy that exists among the domain objects. Rect-

angles are object classes. The lines labeled in lower case are map names from one object to other

objects. Maps are unidirectional, therefore the object or group of objects that an object maps to

are represented as rounded rectangles.
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%%% File-Name : da.re (OHL domain model) %%%

%%% Authors Capt Mary Boom, Capt Brad Nallare %%%

%%% Purpose This file builds the domain model to support the OHL %%%
%%% architecture defined in Chapter 3 of our thesis. There are three main %XX
%XX types of constructs in this file: Object class definitions, attribute XXX
%%% maps and tree attribute definitions. The object class are defined in %%%

%%X the first part of this file and are written in an ISA type hierarchy. %XX

%XX Attribute maps and tree attribue definitions are partitioned according XXX
%XX to object type. %

H in-package("RU")
H! in-grammar('user)

X%%%% %, %%%%%% % % OBJECT CLASSES XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

var OHL-Object object-class subtype-of user-object
var Ada-Syntactic-Object object-class subtype-of user-object

var Informal-Model object-class subtype-of OHL-Object

%X% The folloving objects match the objects required in the OHL architecture

var Analysis-Object : object-class subtype-of OWL-Object
var Entity-object : object-class subtype-of Analysis-Object
var Entity-Class : object-class subtype-of Entity-Object
var Entity-Instance : object-class subtype-of Entity-Object
var Process-Object : object-class subtype-of Analysis-Object
var State-Object : object-class subtype-of Analysis-Object
var Behavior-Object : object-class subtype-of Analysis-Object
var Process-Desc-Lang : object-class subtype-of Behavior-Object
var Pre-Post-Cond : object-class subtype-of Behavior-Object

vat Decision-Table : object-class subtype-of Behavior-Object
var Store-Object : object-class subtype-of Analysis-Object
var Relationship-Object : object-class subtype-of Analysis-Object
var Flow-Object object-class subtype-of Analysis-Object
var Event-Object : object-class subtype-of Analysis-Object
var Relation-Table : object-class subtype-of Analysis-Object
var Relation : object-class subtype-of Relation-Table

XXX The following objects are needed for specifying Behaviors

var DT-Components : object-class subtype-of OWL-Object
var Condition-Row object-class subtype-of DT-Components
var Condition-Entry object-class subtype-of DT-Components
var Action-Row object-class subtype-of DT-Components
var Action-Entry : object-class subtype-of DT-Components

var PPC-Components object-class subtype-of OML-Object
var PPC-Statement object-class subtype-of PPC-Components

XXX The following are necessary for specifying Entity attributes
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var Entity-Attributes object-class subtype-of OML-Object
var User-Defined-Attr object-class subtype-of Entity-Attributes
var User-Declared-Attr object-class subtype-of Entity-Attributes

%X% The following are necessary for specifying the range of Entity attributes

var Attribute-Range object-class subtype-of OHL-Object
var Integer-Range object-class subtype-of Attribute-Range
var Real-Range object-class subtype-of Attribute-Range
var Enumerated-Range object-class subtype-of Attribute-Range

%%% The following are Expression objects

var Expression object-class subtype-of OHL-Object

var Boolean-expression object-class subtype-of expression
var Boolean-And object-class subtype-of boolean-expression
var Boolean-Not object-class subtype-of boolean-expression
var Boolean-Or object-class subtype-of boolean-expression
var Compare-Equal object-class subtype-of boolean-expression
var Compare-Greater-Or-Equal object-class subtype-of boolean-expression
var Compare-Greater-Than object-class subtype-of boolean-expression
var Compare-Less-Or-Equal object-class subtype-of boolean-expression
var Compare-Less-Than object-class subtype-of boolean-expression
var Compare-Not-Equal object-class subtype-of boolean-expression
var Compare-In object-class subtype-of boolean-expression
var Compare-For-All : object-class subtype-of boolean-expression
var Compare-Exists : object-class subtype-of boolean-expression

var Predicate-Range object-class subtype-of expression
var R-Equal object-class subtype-of predicate-range
var R-Greater-Or-Equal object-class subtype-of predicate-range
var R-Greater-Than object-class subtype-of predicate-range

var R-Less-Or-Equal object-class subtype-of predicate-range
var R-Less-Than object-class subtype-of predicate-range
var R-Not-Equal object-class subtype-of predicate-range

var Arithmetic-expression object-class subtype-of expression
var Arithmetic-Add object-class subtype-of arithmetic-expression
var Arithmetic-Subtract object-class subtype-of arithmetic-expression
var Unary-Minus object-class subtype-of arithmetic-expression
var Arithmetic-Divide object-class subtype-of arithmetic-expression
var Arithmetic-Multiply object-class subtype-of arithmetic-expression

var Set-expression object-class subtype-of expression
var Set-Union object-class subtype-of set-expression
var Set-Diff object-class subtype-of set-expression
var GetItem object-class subtype-of set-expression
var GetSet object-class subtype-of set-expression
var SetBuilder object-class subtype-of set-expression

var Literal-Constant object-class subtype-of expression
var Integer-Literal object-class subtype-of literal-Constant
var Real-Literal object-class subtype-of literal-Constant
var Boolean-Literal object-class subtype-of literal-Constant
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var False-Literal object-class subtype-of Boolean-Literal
var True-Literal object-class subtype-of Boolean-Literal
var String-Literal object-class subtype-of literal-Constant
var Symbol-Literal object-class subtype-of literal-Constant
var Set-Literal object-class subtype-of literal-Constant
var Sequence-Literal object-class subtype-of literal-Constant

var Variable-Use object-class subtype-of expression
var Identifier-Use object-class subtype-of Variable-Use

%%% The following are Statement objects

var Statement object-class subtype-of OML-object
var Assignment-Statement object-class subtype-of Statement
var Function-Call object-class subtype-of Statement
var Create object-class subtype-of Function-Call
var Destroy object-class subtype-of Function-Call
var Display object-class subtype-of Function-Call

% These object classes represent the declared variables

var Identifier object-class subtype-of OML-object
var Identifier-Def object-class subtype-of identifier

%%%7 These object classes represent the legal variable types

var Var-Type object-class subtype-of OML-Object
var Type-boolean object-class subtype-of var-type
var Type-integer object-class subtype-of var-type
var Type-real object-class subtype-of var-type
var Type-set object-class subtype-of var-type
var Type-sequence object-class subtype-of var-type

var Type-string object-class subtype-of var-type
var Type-symbol object-class subtype-of var-type

var Flow-Type object-class subtype-of OML-Object
var Flow-PP object-class subtype-of flow-type
var Flow-PS object-class subtype-of flow-type
var Flow-SP object-class subtype-of flow-type
var Flow-PE object-class subtype-of flow-type

var Flow-EP object-class subtype-of flow-type

var Cardinality-Type object-class subtype-of ONL-Object

var One-Many object-class subtype-of cardinality-type
var One-One object-class subtype-of cardinality-type
var Many-Many object-class subtype-of cardinality-type
var Many-One object-class subtype-of cardinality-type

%%%%%%%%X%%XXX%ZZ%% ZZ%% ANALYSIS-OBJECT-ATTRIBUTES %%%%%%%%XXXZ%%%XZZZXX%%%

var CONSTRAINTS-MAP map(Analysis-Object, seq(Expression)) = {II}

var DEFINED-NAME map(OML-Object, Identifier-Def) - {I I}
var NAME-USE map(OML-object, Identifier-use) = {I I}
var NAME-USES map(OML-Object, seq(Identifier-use)) - {Ii}
var VALUE-MAP map(ONL-Object, Literal-Constant) = {II}
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var VARIABLE-TYPE mapCONL-Object, Var-Type) {I}
var ANALYSIS-OBJ-MAP nap(DNL-Object, set (Analysis-Object)) f illI

form ANALYSIS-OBJECT-ATTRIBUTES

define-tree-attributes ('Informal-Model, { 'Defined-Name,
'Analysis-Obj-Mapl)

%%%%X%%%%%%%%%%%%%%%%%XX% EXPRESSION-ATTRIBUTES XX%% XX%%%%% XXXXXXXZ%%%%X

var ARGUMENT-i map(expression, expression) - {I1I}
var ARGUMENT-2 map(expression, expression) - fill
var ARGUMENT map(predicate-range, expression) ill)
var SET-ARG map(expression, set~boolean-expression)) = fill
var SET-DIFF-CONDITION map(set-expression, seq~expression)) - fill
var SETBUILDER-MAP map (set-expression. setbuilder) = f ill

var INTEGER.-VALUE-OF map (Integer-Literal, Integer) = f ill
var REAL-VALUE-OF mapCReal-Literal, Real) = fill}
var STRING-VALUE-OF map (String-Literal, String) = f ill
var SYMBOL-VALUE-OF map (Symbol-Literal, Symbol) = { II

%%%%%%%%%%%%%%%%%ZXXZX%X%%%%% ENTITY-ATTRIBUTES %%ZX%%ZX-t%ZZ% ZZZX%%%ZZZZZX%

var ENTITY-USER-DECL-MAP mapCEntity-Object, seqCUser-Declared-.Attr)) -
var ENTITY-USER-DEF-MAP mapCEntity-Object, seqCUser-Defined-Attr)) = {I
var EXTERNAL-ENTITY map (Entity-Object, Boolean) {I

form ENTITY-OBJECT-ATTRIBUTES

define-tree-attributes( 'Ent ity-Class, { 'Defined-Name,
'External-Entity,
'Eit ity-User-Dec 1-Map,
'Constraints-Mapi);

def ine-tree-attributes C'Ent ity-Instance, { 'Defined-Name,
'Entity-User-Decl-Map,
'Name-Use,
'Entity-User-Def-Nap,
'External-Entity,
'Constraints-Map})

%%% %%%%%%%%%%%%%% USER-DECLARED-ATTRIBUTES 7~%%X%%%%%X%%%%%XXXX%%%X

var USER-DECL-ATTR-TYPE map(User-Declared-Attr, Var-Type) = I
var RANGE-ATTRIBUTE map(OML-Dbject, Attribute-Range) = II
var ENUM-RANGE-MAP map(Enii-erated-Range, set(symbol)) -{II
var INTEGER-HIGH-NAP map(Integer-kange, Integer) - fillI
var INTEGER-LOW-MAP map(Integer-Range, Integer) -{II
var REAL-HIGH-NAP map(Real-Range, Real) -{II
var REAL-LOW-NAP map(Real-Range, Real) = II
var SYMBOL-VAL map(Entity-Attributes, Symbol) - fillI

form USER-DECLARED-ATTRIBUTES

define-tree-attributes ('User-Declared-Attr, { 'Defined-Name,
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'User-Decl-Attr-Type,

'Range-Attribute,
'Value-Map,
'Symbol-Val));

define-tree-attributesC 'User-Defined-Attr, { 'Name-Use,
'Value-Map,
'Symbol-Valid);

def ine-tree-attributes ('Enum-erated-Range, f 'enumn-range-mapl);

define-tree-attributes ('Integer-Range, { 'integer-low-map,

'integer-high-map));

def ine-tree-attributes C'Real-Range, f 'real-low-map,
'real-high-map))

%%%%%%%%%%%%%%%%%%%%%X%%% 7%% PROCESS-ATTRIBUTES %%%%X%XZ%%%%%%%=%%%%%%%%

form PROCESS-OBJECT-ATTRIBUTES

define-tree-attributes( 'Process-Object, { 'Defined-Name,
'Constraint s-Nap})

%%%%%%%%%%%%%%%Y.%%%%%% STATE-ATTRIBUTES %%%X% XXXXXXXXXXXXXX%%%

var STATE-SPACE-MAP :map(State-Object, set(expession)) ={I

form STATE-OBJECT-ATTRIBUTES

define-tree-attributes C'State-Object, {'Defined-Name,
'State-Space-Nap,

'Constraints-Nap))

%%%%%%%%%%%%%%% BEHAVIOR-ATTRIBUTES %%X%%%%XXXXXXXXXXXXXXXXXXXXX%

var BEHAVIOR-PPC-NAP sap(Pre-Post-Corid, seqCPPC-Statement)) =II

XUvar PDL-NAP map(Procese-Desc-Lang, Ada-Syntactic-Object) -{II

war PPC-PRE-NAP map(PPC-Statement, seq(Expression)) = II
var PPC-POST-NAP mapCPPC-Statement, seqCStatement)) = {I
var PPC-EVENT-NAP map(PPC-Statement, Identifier-Use) - {II

var DT-COND-ROW-NAP map(Decision-Table, seqCCondition-Row)) = II
var DT-ACTION-ROW-NAP nap(Decision-Table, seqCAction-Rou)) -{II
var DT-EVENT-NAP map(Decision-Table, seq(Identifier-Use)) - fill)

var CONDITION-ENTRY-NAP map(Condition-Row, seq(Condition-Entry)) = II
var CONDITION-RANGE sapCCondition-Entry, Predicate-Range) = II
war DOlT-CARE-VALUE map(Condition-entry, Boolean) HI
war ACTION-ENTRY-NAP mapCAction-Row, seq(Action-Entry)) = II
var ACTION-VALUE mapCAction-Entry, Literal-Constant) - {I
var ACTION-EIPR map(Action-Entry, Arithmetic-expression) {II
form BEHAVIOR-OBJECT-ATTRIBUTES
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define-tree-attribute ( 'Pre-Post-Cond, { 'Defined-lame,
'Behavior-PPC-Nap,
'Constraints-Nap});

define-tree-attributes('PPC-Statement, {'PPC-Pre-Nap,
'PPC-Post-Nap,
'PPC-Event-Nap});

% define-tree-attributes(C'Process-Deac-Lang, { 'Defined-lame,
% 'PDL-Hap,
% 'Constraints-Nap));

def ine-tree-attributes C'Condit ion-Row, { 'lane-Use, 'condition-entry-map});

def ine-tree-attributes(' Act ion-Row, {'Nane-Use, 'action-entry-sap));

def ine-tree-attributes C 'Condit ion-Entry, f 'condition-range,
'dont-care-value,
'name-use));

define-tree-attributesC 'Action-Entry, { action-value,
'name-usne,

'action-expri);

def ine-tree-attributes C 'Dec ision-Table, { 'Defined-lane,
'DT-Cond-Row-Nap,
'DT-kctiou-Rov-Xap,

'DT-Event-Nap,

'Constraints-Nap))

%X~%%%%%%%%%Z%%XXZZ%%7.%XZ% STORE-ATTRIBUTES %%%%%%%%%%%%%%%%%%%%%X%%%%%%

var IATURE-SET-NAP map(Store-Object, boolean) = II
var CONTENT-NAMIE map(Store-Object. Identifier-Use) = II
var KEY-lAME napCStore-Object, Identifier-Use) = II
var ORDER-SET-MAP map(Store-Object, boolean) - {I

form STORE-OBJECT-ATTRIBUTES
define-tree-attributes('Store-Object, { 'Defined-lane,

'lature-Set-Nap,
'Content-lane,
'Key-lame,
'Order-Set-Nap,
'Constraints-Map))

%%%%%%%%%%%%% %%7%%% RELATIONSHIP-ATTRIBUTES %%%%%%%% %%%%%%%%%%%%%%

var REL-TYPE-NAP nap(Relationship-Object, symbol) {II
var CARDINALITY-NAP nap(Relationship-Object, cardinality-type) -{I

form RELATIONSHIP-OBJECT-ATTRIBUTES
define-tree-attributes( 'Relationship-Object, ('Defined-lane,

'Rel-Type-Nap,
'Cardinality-Nap,
'Constraints-Nap))
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%%%%X% X%%%%%%%%%%%%%%%%%% FLOW-ATTRIBUTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

var FLOW-LINK-NAP .apCFlow-Object. flow-type) ( I II
var FLOW-DATA-NAP sap(Flov-Object, identifier-use) f ill

form FLOW-OBJECT-ATTRIBUTES
define-tree-attributes( 'Flow-Object, * 'Defined-Name,

'Flow-Link-Nap,
'Flow-Data-Nap.
'Constraints-Nap))

%%%%%%%%%X%%%%%%%%%%% EVENT-ATTRIBUTES %%%%%%%=%%%%%%%%%%% XZX4%%

var EVENT-TYPE map(Event-Object. boolean) (HII}
var EVENT-PRIORITY mapCEvent-Object, integer) f 1ill

form EVENT-OBJECT-ATTRIBUTES
define-tree-attributes( 'Event-Object, { 'Defined-lame,

'Event-Type,
'Event-Priority,
'Constraint s-Nap))

%%%%%%%%%%ZZZ%%%%%%% RELATION-TABLE-ATTRIBUTES %%%%%%=%= =%%%%%%%.

var RELATION-SEQUENCE mapCRelation-Table, seqCRelation)) - fill}
var FRON-OBJ-NAP mapCRelation, Identifier-Use) = {I
var ASSOC-OBJ-NAP map(Relation, Identifier-Use) = I
var TO-OBJ-NAP mapCRelation, Identifier-Use) = I

form RELATION-TABLE-ATTRIBUTES
define-tree-attributes( 'Relation-Table, {'Defined-Name,

'Relation-Sequence,
'Constraint s-Nap));

define-tree-attributes ('Relation, { 'From-Obj-Nap,
'Assoc-Obj-Nap,
'To-Obj -Nap})

%%%%%%%%%%% XXX%%%%%%%%%XX ASSIGNMENT-STATEMENTS XXXXXXXXXXXXXXXXXXXXXXX

var LHS map(Assignuent-Statement, variable-use) = { 11)
var RHS .ap(Assignment-Statement, expression) - fill)

form ASSIGNNENT-STATENENT-ATTRIBUTES
define-tree-attributes ('Assignment-Statement, { LHS, 'RHS})

%XXX%%%%%%%%%%XXX%%%X%%%%X%%% FUNCTION-CALLS %XXXX%%XXXXXXXXXXXXXXXXXXXXXXX

var DISPLAY-SET :map~display, set-expression) f ill

form FUNCTION-CALL-ATTRIBUTES

def ine-tree-attributes C 'Create, { 'defined-name, 'name-use));

define-tree-attributes('Destroy, {'name-use));
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define-tree-attributes( 'Display, { naneuse, 'display-set})
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A.4 OML Grammar

%%% File-Nlme : ga.re (OML grammar productions) %%%

%%% Authors Capt Mary Boom, Capt Brad Mallare %%%

%%% Purpose This file builds the productions that define the grammar %%%
%%% for an OML specification. When parsing OML specifications, these %%%
%%% productions ensure that the specifications satisfy the syntax %%%
%%% requirements defined in the OML BNF. %%%

!! in-package("ru")
! in-grammar('syntax)

grammar OHL

start-classes informal-model

file-classes informal-model

productions

informal-model
["specification" defined-name analysis-obj-map + "" ]
builds informal-model,

%%%X%%%%%%%%%%%%%XX%% ENTITY OBJECT PRODUCTIONS %%% XX%%% XX%%X%%%%%X%%

entity-class ::=
[defined-name "class-of" "entity"

"type" ":" (["external" !H external-entity] I "internal")
{ ["parts" entity-user-decl-map + ";1" I
{ ["constraints" constraints-map + ";" 1]1

builds entity-class,

entity-instance ::-
[defined-name "instance-of"

( ["entity"
"type" ":" (["external" !! external-entity] I "internal")
{ ["parts" entity-user-decl-map + ";"]M}

S[name-use
{["values" entity-user-def-map + ";"]}J

)
{ ["constraints" constraints-map +

builds entity-instance,

% X%%%%%%]X%%%%%%%=%X%%% USER-DECLARED-ATTRIBUTE-PRODUCTIONS X%%%%%%X%%XXXX %%%%%

user-declared-attr ::-
[defined-name ":" variable-type
{["range" "{" range-attribute "I"]}
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-. -- ~ 'nr~w rn ~ ruwr-- rw7 - -7

{["init-val" (value-map I symbol-val)]} J
builds user-declared-attr,

user-defined-attr ::-
[name-use :": (value-map I symbol-val)]
builds user-defined-attr,

enumerated-range ::-
[enum-range-map + ,"]

builds enumerated-range,

integer-range ::-
[integer-low-map "." "*" integer-high-map]
builds integer-range,

real-range ::-
[real-lou-map ". '." real-high-map]
builds real-range,

% % % PROCESS OBJECT PRODUCTIONS %%%%RCSBEPDUISXh %ZZXXXXZ%%

process-object ::-
[defined-name "instance-of" "process"

{("constraints" constraints-map + ";"]
builds process-object,

%%%%%%%%%%XX %%%%ZX%% STATE OBJECT PRODUCTIONS %%%%ZX X%%% IZZZZZXZXX%1XX

state-object ::=
[defined-name "instance-of" "state"

"state-space" ":" state-space-map + ";"
{ ["constraints" constraints-map + ";"J })

builds state-object,

% % % BEHAVIOR OBJECT PRODUCTIONS %%%%%ZZBHIOJCPDTOZXZIXXX%

decision-table ::-
[defined-name "instance-of" "behavior"

[dt-cond-row-map + ";" ) "-->"

{[dt-action-row-map + ";" J}
["event" "," dt-event-map + "," )

{["constraints" constraints-map + ";" J}]
builds decision-table,

condition-row ::-
[name-use "," condition-entry-map +
builds condition-row,

action-row ::-
[name-use "," action-entry-map + ","J
builds action-rou,

% Name lsp i- the next production allows us to have symbols such as 'safe and
% 'unsafe in the decision tables. It is not a pure use of the map name-use.

condition-entry
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[ (["dont-care" !! dont-care-value) I condition-range) I %%I name-use
builds condition-entry,

action-entry ::-

[U action-value I name-use I action-expr)]
builds action-entry,

pre-post-cond ::-
[defined-name "instance-of" "behavior"

behavior-ppc-map + ";"
{ ["constraints" constraints-map + ";"] }]

builds pre-post-cond,

ppc-statement ::=
[ppc-pre-map + "' "-->" {[ppc-post-map + "&1"}

"event" ppc-event-map]
builds ppc-statement,

% process-desc-lang ::-

X [defined-name pdl-map
%{ ["constraints" constraints-map + ";"M 1)
% builds process-desc-lang,

XX% place-holder for pdl, pending implementation

% ada-syntactic-object ::-

X ["null"] builds ada-syntactic-object,

%XXXXXXX%% XXXXXXXXXX STORE OBJECT PRODUCTIONS X%% XXXXXXXXXXX%%=%XXX

store-object ::-

[defined-name "instance-of" "store"
"nature" ":" (("set" !! nature-set-map] I "sequence")

"content" ":" content-name
{ ["key" "11:" key-name]}
{["order" ":"(["ascending" !! order-set-map] I "descending"))]

{ ["constraints" constraints-map + ";"M}]
builds store-object,

%XXXXXXXXXXX•X%% RELATIONSHIP OBJECT PRODUCTIONS %%%%%%XXXXXX%=XXX

relationship-object ::-
[defined-name "instance-of" "relationship"

"type" ":" rel-type-map
"cardinality" ":" cardinality-map

{ ["constraints" constraints-map + ""]]

builds relationship-object,

X%%XXXXX%% XX FLOW OBJECT PRODUCTIONS %%%%XXXXXXXXXXXXXX

flow-object ::-
[defined-name "instance-of ". "flow"

"flow-link" ":" flow-link-map
"flow-data" ":" flow-data-map
{ ["constraints" constraints-map + ";"D}

builds flow-object,
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%%%%%%%%%%%%%%%%%%%%%% EVENT OBJECT PRODUCTIONS XXXXXXXXXXXXXXXXXXXXX

event-object ::-

(defined-name "instance-of" "event"
"type" ":" (["internal" !! event-type] I "external")

{ ["priority" ":" event-priority]) }
{["constraints" constraints-map + ";"])]

builds event-object,

%%%%%%%%%%%%%%=%% RELATION-TABLE OBJECT PRODUCTIONS %%%%%%XX=%XXXXXX%%

relation-table ::-
[defined-name "instance-of" "relation-table"

relation-sequence + ";"
{ ("constraints" constraints-map + ";11]11

builds relation-table,

relation ::-
[from-obj-map "," assoc-obj-map "," to-obj-map]

builds relation,

% % % IDENTIFIER OBJECT PRODUCTIONS %%%NIIROJTPOUTN XXXZXXXX %

identifier-def ::- [ name ]

builds identifier-def,

identifier-use :: [name J
builds identifier-use,

% % % LITERAL CONSTANT PRODUCTIONS %%%TRLOSA RDTOSXXXXXXXX%

integer-literal ::- [ integer-value-of ]

builds integer-literal,

real-literal ::- [ real-value-of ]
builds real-literal,

true-literal ::- [ "true" ]

builds true-literal,

false-literal ::- [ "false" ]

builds false-literal,

string-literal ::- [ string-value-of ]
builds string-literal,

%%%%%%% %%%%% VARIABLE TYPE PRODUCTIONS %%XXXXXXXXXXXXXXXXXX%

type-boolean ::- [ "boolean" ]
builds type-boolean,

type-string ::- [ "string" ]

builds type-string,

type-symbol : [ "symbol" I
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builds type-symbol,

type-integer ::- [ "integer" ]
builds type-integer,

type-real ::- [ "real" ]
builds type-real,

type-set ::- [ "set" ]
builds type-set,

type-sequence ::- [ "sequence"]
builds type-sequence,

•%%%%X%% XX%%%XXXXZXXXZX% FLOW TYPE PRODUCTIONS %X7%%,%ZX%%%%%%%%7%,%% %%%

flow-pp ::- [ "proc-proc" ]
builds flow-pp,

flow-ps ::- [ "proc-store" ]
builds flow-ps,

flow-sp ::- [ "store-proc" ]
builds flow-sp,

flow-pe ::- E "proc-entity" ]
builds flow-pe,

flow-ep ::= [ "entity-proc" J
builds flow-ep,

% % % % CARDINALITY TYPE PRODUCTIONS %%%RITTEPOCOS%%%%%%%

One-Many ::- [ "I-&" ]
builds One-Many,

One-One ::- [ "1-1" 1
builds One-One,

Many-One ::- [ "rn-i"
builds Many-One,

Many-Many ::- [ "m-rn"
builds Many-Many,

% % % % EXPRESSION PRODUCTIONS %%%%%%%XESOPOUTO XXZZXZ %X%

%%% Arithmetic Expressions %%%

arithmetic-add ::= argument-I "+" argument-2 I builds arithmetic-add,

unary-ainus : [ ..... argument-1 I builds unary-rinus,

arithmetic-divide : [ argument-i "/" argument-2 ]
builds arithmetic-divide,
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arithmetic-multiply :[argument-i"* argument-2)
builds arithmetic-multiply,

arithmetic-subtract :: [ argument-i"" argument-2)
builds arithmetic-subtract,

%%% Boolean Expressions %%X

boolean-and :: [ argument-I "and" argument-2)
builds boolean-aud,

boolean-not :: [ "not" argument-iJ
builds boolean-not,

boolean-or :: [ argument-i "or" argument-2]
builds boolean-or,

compare-equal ::- [ argument-i "1-" argument-2)
builds compare-equal,

compare-greater-or-equal U[argument-i ">"' argument-2
builds compare-greater-or-equal.

compare-greater-than ::- [ argument-i ">" argument-2]
builds compare-greater-than.

compare-less-or-equal :: [ argument-i 11<a-" argument-2
builds compare-less-or-equal,

compare-less-than :: [ argument-i 1<"' argument-2
builds compare-less-than,

compare-not-equal :: [ argument-i 11/-'I argument-2I
builds compare-not-equal,

compare-in :: [ argument-i "in" argument-2] XX arg-2 must be a set
builds compare-in, XU or seq

compare-for-all ::- ["forall" "C" name-uses + "," "T"
"C"I [set-arg + "&J "1.>"1 argument-i ")III

builds compare-for-all,

compare-exists :: ["exists" "C" name-uses + " 1"1")
"C"I [set-arg + "I'"l IT" ]

builds compare-exists,

XXX Set comprehension expressions %%%

set-union ::- [argument-i "union" argument-2J
builds set-union,

set-diff :: [argument-i "set-diff" setbuilder-map
builds set-diff,

getitem ::- [ "getitem" "C" setbuilder-map""
builds get item,
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getset : [ "getset" setbuilder-map ]
builds getset,

setbuilder : [ " defined-name "1" set-diff-condition + "&" "}" ]
builds setbuilder,

%%% Predicate Range Expressions %%%

r-equal :: ["-" argument]
builds r-equal,

r-greater-or-equal ::- [">-" argument]
builds r-greater-or-equal,

r-greater-than :-- [">" argument)
builds r-greater-than,

r-less-or-equal ::- ["<W1" argument]
builds r-less-or-equal,

r-less-than :: ["<" argument]
builds r-less-than,

r-not-equal ::- [ "/=" argument]

builds r-not-equal,

%%% %%%%%%%%%%% Z% STATEMENT PRODUCTIONS % %%%%%%%%

assignment-statement ::- [ LHS ":=" RHS)
builds assignment-statement,

create ::- ["create" "C" defined-name ":" name-use
builds create,

destroy ::- ["destroy" "(" name-use '91
builds destroy,

display ::- ["display" "C" (name-use I display-set ) ")" ]
builds display

no-patterns

precedence

for expression brackets "(" matching ")"

(same-level "and", "or" associativity left),
(same-level "<", "<=%, "=",, "1>-", ">"1, 1/=1" associativity none),

(same-level "in", "set-diff", "union" associativity left),
(same-level "+", "-" associativity left),
(same-level "W", "/" associativity left),
(same-level "not" associativity none)

symbol-start-chars
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"abcdefghijkimnopqrstuvvxyzABCDEFGHIJKLNNOPQRSTUVWXYZ"

symbol-continue-chars
"abcdef ghij kliopqrstuvvxyzABCDEFGHIJKLMNaPQRSTUVWXYZO 123456789-."

comments
"T" matching

"*I I" matching "I I$" nested

end
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Appendix B. Ada (Subset) Program Design Language (PDL)

1. Program Parts

<Ada-Program> ::= <Procedure-Declaration>

<Procedure-Declaration> ::= "procedure" <Identifier-Definition> "is" <Ablock>

<Function-Declaration> ::="function" <Identifier-Definition>

"return" <Var-Type> "is" <Ablock>

<Ablock> ::= {<Declaration-Statement>} "begin"

{<Astatement>}+ "end" (<Identifier-Definition>} ";"

<Declaration-Statement> ::= <Variable-Declaration>

I <Enumerated-Declaration> I <Subprogram-Declaration>

<Variable-Declaration>::= <Identifier-Definition> {, <Identifier-Definition>}":"

[<Constant-Flag>] <Var-Type> [":="<Expression>]";"

<Enumerated-Declaration> ::= "type" <Identifier-Definition> "is"

"(" <Identifier-Definition> {, <Identifier-Definition>}")"";"

<Subprogram- Declaration> =(<Procedure-Declaration> I <Function-Declaration>)

<Var-Type> ::= <"boolean" I "integer" "float" I <Type-Enumerated> I "string"

<Type-Enumerated> ::= <Identifier-Use>

2. Statements

<Astatement> = <An-If-Statement> I <Aassignment-Statement>

I<Loop-Statement> I <Exit-Statement> I <Return-Statement>

<Read-Statement> I <Write-Statement>

I <Procedure-Call> I <Block-Structure>
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<An-If-Statement> ::= "if' <Expression> "then" {<Astatement>}+

[{<Elsif-Statement>} ["else" {<Astatement>}+ ]]"end" "if' ";"

<Elsif-Statement> ::= "elsif' <Expression> "then" {<Astatement>}+

<Aassignment-Statement> ::= <Variable-Use> ":=" <Expression> ";"

<Loop-Statement> ::=-<Basic-Loop> I <For-Loop> I <While-Loop>

<Basic-Loop> ::= [<Identifier-Definition> ":"]

"loop" { <Astatement> } +"end" "loop" ";"

<For-Loop> ::= [<Identifier-Definition> ":"'

"for" <Identifier-Use> "in" <Expression> "." "." <Expression>

"loop" { <Astatement> } + "end" "loop" ";"

<While-Loop> ::= [<Identifier-Definition> ":"] "while"

<Boolean-Expression> "loop" {<Astatement>}+ "end" "loop" ";"

<ExitStatement> ::= "exit" [<Identifier-Definition>] ["when" <Expression>] ";"

<Read-Statement> "read" "("<Variable-Use>")" ";"

<Write-Statement> "write" "(" <Expression>")" ";"

<Return-Statement> ::= "return" <Expression> ";"

<Block-Structure> ::= [<Identifier-Definition>":"]{ "declare" <Declaration-Statement>}

"begin" {<Astatement>}+ "end" [<Identifier-Definition>]";"

<Procedure-Call> ::= <Identifier-Use> "0" ";"

3. Expressions

<Expression> := <Boolean-Expression> I <Arithmetic-Expression>

<Afunction-Call> I <Variable-Use> I <Type-Conversion- Expression>

I <Literal-Constant> I < Emuneration-Expression>
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<Boolean-Expression> :=<Boolean-And> I <Boolean-Or>

I<Boolean-Not> I <Compare-Equal> I <Compare-Not-Equal>

I<Compare-Greater-Or-Equal> I <Compare-Greater-Than>

<Compare-Less-Or-Equal> I <Compare-Less-Than>

<lBoolean-And> :=<Argument-i> and <Argument-2>

<Boolean-Or> :=<Argument-i> or <Argument-2>

<Boolean-Not> ::not"(" <Argument-i> ")"

<Compare-Equal> :=<Argument-i> "=" <Argument-2>

<Compare-Greater-Or-Equal> :=<Argument-i> '5=" <Argument-2>

<Compare-Greater-Than> =<Argument-i> ">" <Argument-2>

<Compare-Less-Or-Equal> <Argument-i> "<=" <Argument-2>

<Compare-Less-Than> <Argument-i> "<" <Argument-2>

< Compare- Not-Equal > <Argument-i> "/=" <Argument-2>

<Arithmetic-Expression> :=<Arithmetic-Add> I <Arithmetic-Subtract>

< <Arithmetic- Divide> I <Arithmetic-Modulo>

I<Arithmetic-Multiply> I<Arithmetic-Abs>

I<Arithmnetic-Exponent> I<Unary-Plus> I <Unary-Minus>

< Arithmetic- Add> <Argument-i> "+" <Argument-2>

<Unary-Plus> ::= <Argument-I>

<Unary-Minus> ::= <Argument-i>

"<Arithmetic- Divide> :=<Argument-lI>"/" <Argument-2>

" Arithmetic- Modulo> :=<Argumnent-i> mod <Argument-2>

"<Arithmetic- Multiply > ::= <Argumnent-i> "*" <Argurnent-2>
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<Arithmetic-Subtract> :=<Argument-i> "-" <Argument-2>

<Arithmetic-Abs> ::abs"(" <Argument-i> "Y'

<Arithmetic-Exponent> :=<Argument-i> "**" <Argument-2>

<Afunction-Call> :=<Identifier-Use>""

<Variable-Use> :=<Identifier-Use>

<Literal-Constant> <Integer-Literal> I <Real-Literal> I <Boolean-Literal>

<Literal-Constant> <False-Literal> I <T~rue-Literal>

< Enumeration- Expression> := <Succ-Expression> J <Pred-Expression>

I <Char-Expression> I <Val-Expression>

<Succ-Expression> < Identifier- Use> "'succ" "C" <Identifier-Use>

<Pred-Expression> =<Identifier-Use> "'pred" "(" <Identifier-Use>""

< Char- Expression> <Identifier-Use> "'char"

<Val-Expression> :=<Identifier- Use> "'val" "(" <Expression>")

<Type-Conversion-Expression> ::= <Int-To-Float> I <Float-To-Tnt>

<Float-To-Tnt> :="integer""'(" <Expression>")

<Tnt-To-Float> "float""'(" <Expression>""

4. Literals and Identifiers

<Argument-i> <Expression>

<Argument-2> <Expression>

"<Identifier- Definition> :=<Name>

"<Identifier- Use> :=<Namne>

"<Integer- Literal> :=integer

169



<Real-Literal> real

<True-Literal> "true"

<False-Literal> "false"

<Constant-Flag> ::= "constant"

<Name>::= symbol
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B.1 OML with Ada PDL Domain Model

B3.1.1 OML Domain Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%X%

%%% File-Name : dn.re (OML domain model) %%%

%%% Authors : Capt Mary Boom, Capt Brad Mallare %%%

%%% Purpose This file builds the domain model to support the ONL %%%
%%% architecture defined in Chapter 3 of our thesis. There are three main %%%
%%% types of constructs in this file: Object class definitions, attribute %%%
%%% maps and tree attribute definitions. The object class are defined in %%%
%%% the first part of this file and are written in an ISA type hierarchy. %%%
%%% Attribute maps and tree attribue definitions are partitioned according %%%
%%% to object type. %%%

%%%%%%%Y%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%•%%•%%%%%%%%%%%%%%%%%%%%%%%

! in-package("RU")
!! in-grammar('user)

%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OBJECT CLASSES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

var Specification-Object : object-class subtype-of user-object
var OML-Object : object-class subtype-of specification-object

var Informal-Model object-class subtype-of OHL-Object

%%% The following objects match the objects required in the ONL architecture

var Analysis-Object : object-class subtype-of ONL-Object
var Entity-object object-class subtype-of Analysis-Object
var Entity-Class : object-class subtype-of Entity-Object
var Entity-Instance : object-class subtype-of Entity-Object
var Process-Object : object-class subtype-of Analysis-Object
var State-Object object-class subtype-of Analysis-Object
var Behavior-Object : object-class subtype-of Analysis-Object
var Process-Desc-Lang : object-class subtype-of Behavior-Object
var Pre-Post-Cond : object-class subtype-of Behavior-Object
var Decision-Table : object-class subtype-of Behavior-Object
var Store-Object : object-class subtype-of Analysis-Object
var Relationship-Object : object-class subtype-of Analysis-Object
var Flow-Object : object-class subtype-of Analysis-Object
var Event-Object : object-class subtype-of Analysis-abject
var Relation-Table : object-class subtype-of Analysis-Object
var Relation : object-class subtype-of Relation-Table

%%% The following objects are needed for specifying Behaviors

var DT-Components : object-class subtype-of OML-Object
var Condition-Row : object-class subtype-of DT-Components
var Condition-Entry : object-class subtype-of DT-Components
var Action-Row object-class subtype-of DT-Components
var Action-Entry : object-class subtype-of DT-Components

var PPC-Components : object-class subtype-of OHL-Object
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var PPC-Statement object-class subtype-of PPC-Components

var %XX The following are necessary for specifying Entity attributes

Entity-Attributes : object-class subtype-of ONL-Object
var User-Defined-Attr object-class subtype-of Entity-Attributes
var User-Declared-Attr object-class subtype-of Entity-Attributes

XXX The following are necessary for specifying the range of Entity attributes

var Attribute-Range object-class subtype-of OHL-Object
var Integer-Range object-class subtype-of Attribute-Range
var Real-Range object-class subtype-of Attribute-Range
var Enumerated-Range object-class subtype-of Attribute-Range

%XX The following are Expression objects

var Expression object-class subtype-of specification-Object

var Boolean-expression object-class subtype-of expression
var Boolean-And object-class subtype-of boolean-expression
var Boolean-Not object-class subtype-of boolean-expression
var Boolean-Or object-class subtype-of boolean-expression
var Compare-Equal object-class subtype-of boolean-expression
var Compare-Greater-Or-Equal object-class subtype-of boolean-expression
var Compare-Greater-Than object-class subtype-of boolean-expression
var Compare-Less-Or-Equal object-class subtype-of boolean-erpression
var Compare-Less-Than object-class subtype-of boolean-expression
var Compare-Not-Equal object-class subtype-of boolean-expression
var Compare-In object-class subtype-of boolean-expression
var Compare-For-All object-class subtype-of boolean-expression
var Compare-Exists object-class subtype-of boolean-expression

var Predicate-Range object-class subtype-of expression
var R-Equal object-class subtype-of predicate-range
var R-Greater-Or-Equal object-class subtype-of predicate-range
var R-Greater-Than object-class subtype-of predicate-range
var R-Less-Or-Equal object-class subtype-of predicate-range
var R-Less-Than object-class subtype-of predicate-range
var R-Not-Equal object-class subtype-of predicate-range

var Arithmetic-expression object-class subtype-of expression
var Arithmetic-Add: object-class subtype-of arithmetic-expression
var Arithmetic-Subtract object-class subtype-of arithmetic-expression
var Unary-Ninus object-class subtype-of arithmetic-expression
var Arithmetic-Divide object-class subtype-of arithmetic-expression
var Arithmetic-Multiply object-class subtype-of arithmetic-expression

var Set-expression object-class subtype-of expression
var Set-Union object-class subtype-of set-expression
var Set-Diff object-class subtype-of set-expression
var GetItem object-class subtype-of set-expression
var GetSet object-class subtype-of set-expression
var SetBuilder object-class subtype-of set-expression

var Literal-Constant object-class subtype-of expression
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var Integer-Literal : object-class subtype-of literal-Constant
var Real-Literal : object-class subtype-of literal-Constant
var Boolean-Literal : object-class subtype-of literal-Constant
var False-Literal : object-class subtype-of Boolean-Literal
var True-Literal : object-class subtype-of Boolean-Literal
var String-Literal : object-class subtype-of literal-Constant
var Symbol-Literal : object-class subtype-of literal-Constant
var Set-Literal : object-class subtype-of literal-Constant
var Sequence-Literal : object-class subtype-of literal-Constant

var Variable-Use : object-class subtype-of expression
var Identifier-Use : object-class subtype-of Variable-Use

%%% The following are Statement objects

var Statement object-class subtype-of OHL-object
var Assignment-Statement object-class subtype-of Statement
var Function-Call object-class subtype-of Statement
var Create object-class subtype-of Function-Call
var Destroy object-class subtype-of Function-Call
var Display object-class subtype-of Function-Call

%%% These object classes represent the declared variables

var Identifier object-class subtype-of OML-object
var Identifier-Def object-class subtype-of identifier

%%% These object classes represent the legal variable types

var Var-Type object-class subtype-of specification-Object
var Type-boolean object-class subtype-of var-type
var Type-integer object-class subtype-of var-type
var Type-real object-class subtype-of var-type
var Type-set object-class subtype-of var-type
var Type-sequence object-class subtype-of var-type
var Type-string object-class subtype-of var-type
var Type-symbol object-class subtype-of var-type

var Flow-Type object-class subtype-of ONL-Object

var Flow-PP object-class subtype-of flow-type
var Flow-PS object-class subtype-of flow-type
var Flow-SP object-class subtype-of flow-type
var Flow-PE object-class subtype-of flow-type
var Flow-EP object-class subtype-of flow-type

var Cardinality-Type object-class subtype-of OML-Object
var One-Many object-class subtype-of cardinality-type
var One-One object-class subtype-of cardinality-type
var Many-Many object-class subtype-of cardinality-type
var Many-One object-class subtype-of cardinality-type

X%%XXXXX%%XXXXXX %%X%% ANALYSIS-OBJECT-ATTRIBUTES %%%%%%XXXXXXXX%% XXXXXXX%%X

var CONSTRAINTS-MAP :ap(Analysis-Object, seq(Expression)) - {II}

var DEFINED-NAME map(Specification-Object, Identifier-Def) - {I I}
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var NAME-USE sapCONL-object, Identifier-use) - {I
var NAME-USES sap(specification-Object,

seq(Identifier-use)) = II
var VALUE-MAP map(OML-Object, Literal-Constant) = II
var VARIABLE-TYPE map(OML-Object, Var-Type) -{II}
var ANALYSIS-OBI-MAP map(OML-Object, setCAnalysis-Object)) - filI}

form ANALYSIS-OBJECT-ATTRIBUTES

define-tree-attributes ('Informal-Model, { 'Defined-Name,
'Analysis-Obj-Map})

%%%%%%Y%%%%%X%XXXVX(%% X7= EXPRESSION-ATTRIBUTES %%%%X%%%%%%%%%%%%%%%%

var ARGUMENT-i map~expression, expression) {H
var ARGUMENT-2 map~expression, expression) = II
var ARGUMENT map(predicate-range, expression) = {I
var SET-ARG map(expression, set(boolean-expression)) {II
var SET-DIFF-CONDITION map~set-expression, seq~expression)) = II
var SETBUILDER-MAP map~set-expression, setbuilder) = II

var INTEGER-VALUE-OF sap(Integer-Literal, Integer) -{II
var REAL-VALUE-OF mapCReal-Literal, Real) = II
var STRING-VALUE-OF map(String-Litera~l, String) = II
var SYMBOL-VALUE-OF map(Symbol-Literal, Symbol) =

X%%%%%%%%%%%%% %%XX%%%%%%%%%XZ% ENTITY-ATTRIBUTES %%%%%%%%%%%%Z ZZ%X%% ZZ=%X

var ENTITY-USER-DECL-MAP mapCEntity-Object, seqCUser-Declared-Attr)) = (11I}
var ENTITY-USER-DEF-MAP map(Entity-Object, seqCUser-Defined-Attr)) - fill}
var EXTERNAL-ENTITY map (Entity-Object, Boolean) {I

form ENTITY-OBJECT-ATTRIBUTES

define-tree-attributes( 'Entity-Class, {'Defined-Name,
'External-Entity,
'Entity-User-Decl-Map,
'Constraint s-Map});

def ine-tree-attributes ('Ent ity-Instance, { 'Defined-Name,
'Entity-User-Decl-Nap,
'Name-Use,
'Ent ity-User-Def -Map,
'External-Entity,
'Constraints-Map})

XX%%%%%%%%%%%%%%%%%%%%%% USER-DECLARED-ATTRIBUTES X%%XX%%Z%%%XZX%X Z%%%%%%%%

var USER-DECL-ATTR-TYPE map(User-Declared-Attr, Var-Type) { I
var RANGE-ATTRIBUTE map(OML-Object, Attribute-Range) -{II
var ENUM-RANGE-MAP map (Enumerated-Range, set(symbol)) = II
var INTEGER-HIGH-MAP sap(Integer-Range, Integer) = II
var INTEGER-LOW-MAP sap(Integer-Range, Integer) - {I
var REAL-HIGH-MAP sap(Real-Range, Real) -{II
var REAL-LOW-MAP sap(Real-Range, Real) -{II
var SYMBOL-VAL map(Entity-Attributes, Symbol) = II
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form USER-DECLARED-ATTRIBUTES

define-tree-attributes C'User-Declared-Attr. { 'Defined-Name,
'Us er-Decl-Attr-Type,
'Range-Attribute,
'Value-Nap,
'Symbol-Val});

define-tree-attributes C'User-Defined-Attr, {'Name-Use,
'Value-Nap,
'Symbol-Val});

define-tree-attributesC' Enumerated-Range. { 'enum-range-map));

define-tree-attributes( 'Integer-Range, {' integer-low-map,
'integer-high-mapi);

define-tree-attributes ('Real-Range, { 'real-low-map,
'real-high-map})

%%%%%X%XX %%%%%%%XX%%XZXX%%% PROCESS-ATTRIBUTES %%%XZ%%%XXZZZXXZZ%% XXZZZXX%

form PROCESS-OBJECT-ATTRIBUTES

define-tree-attributesC 'Process-Object, { 'Defined-Name,
'Constraints-Map})

X%XX%%%%%%%%%%%%ZXZXXX%%ZXX%%% STATE-ATTRIBUTES %%%%%X %XXXXXXXXXXXXXXXXXX

var STATE-SPACE-NAP :map(State-Object, set~expression)) f ilIl

form STATE-OBJECT-ATTRIBUTES

define-tree-attributes( 'State-Object, { 'Defined-Name,
'State-Space-Map,
'Constraints-Mapl)

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEHAVIOR-ATTRIBUTES %XX%%%%XXXXXXXXXXXXXXXX

var BEHAVIOR-PPC-MAP :mapCPre-Post-Cond, seqCPPC-Statement)) - fillI

var PDL-NAP map (Process-Desc-Lang, Procedure-Declaration) = -

var PPC-PRE-MAP sap(PPC-Statement, seq(Expression)) = II
var PPC-POST-MAP sap(PPC-Statemezit, seq(Statement)) = II
var PPC-EYENT-NAP map(PPC-Statement, Identifier-Use) = I

var DT-COND-ROW-NAP sapCDecision-Table, seqCCondition-Rov)) = II
var DT-ACTION-RIJW-NAP sapCDecision-Table, seqCAction-Row)) - {I
var DT-EVENT-NAP sap(Decision-Table, seq(Identifier-Use)) = II

var CONDITION-UNTRY-NAP napCCondition-Rov, seqCCondition-Entry)) -{I)
var CONDITION-RANGE map (Condition-Entry, Predicate-Range) - f ill
Xvar CONDITION-VALUE mapCCondition-Entry, Literal-Constant) - {I
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var DOlT-CARE-VALUIE map(Condition-entry, Boolean) = II
var ACTION-ENTRY-MAP map(Action-Row, seq(Action-Entry)) = I
var ACTION-VALUE map(Action-Entry, Literal-Constant) - fill
var ACTIOI-EXPR map(Action-Entry, Arithmetic-expression) = II
form BEHAVIOR-OBJECT-ATTRIBUTES

define-tree-attributes( 'Pre-Post-Cond, { 'Defined-Name,
'Behavior-PPC-Nap,
'Constrai~nts-Nap));

def ine-tree-attributes C'PPC-Statement, f 'PPC-Pre-Nap,
'PPC-Post-Nap,
'PPC-Event-Nap));

define-tree-attributes( 'Process-Desc-Lang, {'Defined-lame,
'PDL-Nap,

'Constraints-Nap));

def ine-tree-attributes C'Condit ion-Row, { 'lame-Use, 'condition-entry-map));

def ine-tree-attributes ('Act ion-Row, { 'lame-Use, 'action-entry-map));

def ine-tree-attributes ( 'Condit ion-Entry, { condition-range,
'dont-care-value,
'name-use));

def ine-tree-attributes ('Act ion-Entry, { 'action-value,
'name-use,
'action-expr));

def ine-tree-attributes( 'Dec ision-Table, { 'Defined-lame,
'DT-Cond-Row-Nap,
'DT-Act ion-Row-Nap,
'DT-Event-Nap,
'Constraints-Nap))

Z%%%%%%%%%%%%%%%%%ZXXZX% STORE-ATTRIBUTES %%%%%%%%%%%%%%%%%%Z%% ZXXXX%%

var NATURE-SET-NAP map(Store-Object, boolean) - fill
var CONTENT-lAME map(Store-Object, Identifier-Use) - { I1)
var KizY-NANE map(Store-Object, Identifier-Use) - fill
var ORDER-SET-NAP map(Store-Object, boolean) - fill

form STORE-OBJECT-ATTRIBUTES
define-tree-attributes( 'Store-Object, { 'Defined-lame,

'Nature-Set-Nap,
'Content-lame,
'Key-lame,
'Order-Set-Nap,
'Constraints-Nap))

%%%%%%%%%%%%%%%%%%%%%% RELATIONSHIP-ATTRIBUTES %%%%%%%%%%%%XXX XXXXXXX

var REL-TYPE-NAP map(Relationship-Object, symbol) - {I1I)
var CARDINALITY-NAP map(Relationship-Object. cardinality-type) - fill)
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form RELATIONSHIP-OBJECT-ATTRIBUTES
define-tree-attributes('eaC 'si-Ojc, { 'Defined-Name,

'Rel-Type-Map,
'Cardinality-Map,
'Constraints-Map})

%%%XZ%%%%%%%%%%%%%%%%%%% FLOW-ATTRIBUTES %%%%ZX%%%%%%%%%%%XXZ%%%% 7ZXZ7%%

var FLOW-LINK-MAP mapCFlow-Object, flow-type) = 1I1I
var FLOW-DATA-NAP sapCFlow-Object, identifier-use) f {ill

form FLOW-OBJECT-ATTRIBUTES
define-tree-attributes ('Flow-Object, { 'Defined-Name,

'Flow-Link-Map,
'Flow-Data-Map,
'Constraints-Map})

%%%%%%%%%%%%>V%%%%%%XX%%%%%% EVENT-ATTRIBUTES %%%%%%X%XX%%X%%%%X%X%%XXZZZX%

var EVENT-TYPE mapCEvent-Object, boolean) = 111
var EVENT-PRIORITY mapCEvent-Object, integer) filIl

form EVENT-OBJECT-ATTRIBUTES
define-tree-attributes ('Event-Object, {'Defined-Name,

'Event-Type,
'Event-Priority,
'Constraint s-Nap})

%%%%%%%%%%%%Y.%%%%%%%XXX RELATION-TABLE-ATTRIBUTES %%%ZZZ%%%%XZ%ZXZZX%%%%%%%Z

var RELATION-SEQUENCE mapCRelation-Table, seqCRelation)) = {I
var FROM-OBJ-MAP map(Relation, Identifier-Use) = II
var ASSOC-OBJ-MAP map(Relation, Identifier-Use) ={j}
var TO-OBJ-MAP mapCRelation, Identifier-Use) = fill}

form RELATION-TABLE-ATTRIBUTES
define-tree-attributes( 'Relation-Table, {'Defined-Name,

'Relation-Sequence,
'Constraint s-Map});

define-tree-attributes( 'Relation, { 'From-Obj-Map,
'Assoc-Obj-Map,
'To-Obj -Map})

%%%%%%%%7%%%%%%%%%%% ASSIGNMENT-STATEMENTS %%%%%%%%%%%%ZX%%Z%%% ZZXX%

var LHS map(Assignment-Statement, variable-use) -{I

var RHS mapCAssignment-Statement, expression) {II

form ASSIGNMENT-STATEMENT-ATTRIBUTES
def ine-tree-attributes (I 'Assignment -Statement, {'LHS, 'RHSj)

%%%%%%%%%%%"//"%%%'4%%4%' FUNCTION-CALLS %%%%%%%%%%XX%%ZXX%=%X%%%%XXXZ%

var DISPLAY-SET uap(display, set-expression)-{II
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form FUNCTION-CALL-ATTRIBUTES

def ine-tree-attributes C 'Create, { 'defined-name, 'name-usel);

define-tree-attributes('Destroy, {'name-use));

def ine-tree-attributes ('Display, { 'name-use, 'display-seti)
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B.1.2 Ada PDL Domain Model

H in-package("ru")
!! in-grammar('user)

var Specification-Object object-class subtype-of user-object

var Ada-Syntactic-Object object-class subtype-of specification-object

var Procedure-declaration object-class subtype-of ada-syntactic-object
var Function-declaration object-class subtype-of ada-syntactic-object
var ABlock object-class subtype-of ada-syntactic-object
var Declaration-statement object-class subtype-of ada-syntactic-object
var Variable-declaration object-c' ass subtype-of declaration-statement
var Enumerated-declaration object-class subtype-of declaration-statement
var Subprogram-declaration object-class subtype-of declaration-statement
var Var-Type object-class subtype-of specification-object
var Type-boolean object-class subtype-of var-type
var Type-integer object-class subtype-of var-type
var Type-float object-class subtype-of var-type
var Type-enumerated object-class subtype-of var-type
var Type-string object-class subtype-of var-type

var Constant-flag object-class subtype-of ada-syntactic-object

var Expression object-class subtype-of specification-object

var Boolean-expression object-class subtype-of expression
var Boolean-And object-class subtype-of boolean-expression
var Boolean-Not object-class subtype-of boolean-expression
var Boolean-Or object-class subtype-of boolean-expression
var Compare-Equal object-class subtype-of boolean-expression
var Compare-Greater-Or-Equal object-class subtype-of boolean-expression
var Compare-Greater-Than object-class subtype-of boolean-expression
var Compare-Less-Or-Equal object-class subtype-of boolean-expression
var Compare-Less-Than object-class subtype-of boolean-expression
var Compare-Not-Equal object-class subtype-of boolean-expression

var Arithmetic-expression object-class subtype-of expression
var Arithmetic-Add object-class subtype-of arithmetic-expression
var Arithmetic-Subtract object-class subtype-of arithmetic-expression
var Arithmetic-Divide object-class subtype-of arithmetic-expression
var Arithmetic-Modulo object-class subtype-of arithmetic-expression
var Arithmetic-Multiply object-class subtype-of arithmetic-expression
var Arithmetic-Abs object-class subtype-of arithmetic-expression
var Unary-Plus object-class subtype-of arithmetic-expression
var Unary-Minus object-class subtype-of arithmetic-expression
var Arithmetic-Exponent object-class eubtype-of arithmetic-expression

var AFunction-call object-class subtype-of expression
var Variable-Use object-class subtype-of expression
var Identifier-Use object-class subtype-of Variable-Use

var Literal-Constant object-class subtype-of expression
var Integer-Literal object-class subtype-of literal-Constant
var Real-Literal object-class subtype-of literal-Constant
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var Boolean-Literal object-class subtype-of literal-Constant
var False-Literal object-class subtype-of Boolean-Literal
var True-Literal object-class subtype-of Boolean-Literal

var Enumeration-expression object-class subtype-of expression
var Succ-expression object-class subtype-of enumeration-expression
var Pred-expression object-class subtype-of enumeration-expression
var Char-expression object-class subtype-of enumeration-expression
var Val-expression object-class subtype-of enumeration-expression

var Type-conversion-expression : object-class subtype-of expression
var int-to-float object-class subtype-of Type-conversion-expression
var float-to-int object-class subtype-of Type-conversion-expression

var AStatement object-class subtype-of ada-syntactic-object
var An-If-Statement object-class subtype-of astatement
var Elsif-statement object-class subtype-of ada-syntactic-object
var AAssignment-statement object-class subtype-of astatement
var Loop-statement object-class subtype-of astatement
var Basic-Loop object-class subtype-of loop-statement
var For-Loop object-class subtype-of loop-statement
var While-Loop object-class subtype-of loop-statement
var Exit-statement object-class subtype-of astatement
var Read-statement object-class subtype-of astatement
var Write-statement object-class subtype-of astatement
var Return-statement object-class subtype-of astatement
var Block-structure object-class subtype-of astatement
var Procedure-Call object-class subtype-of astatement

var AIdentifier object-class subtype-of ada-syntactic-object
var Identifier-Definition object-class subtype-of aidentifier

%%%%%%%%%%%%%%%%%%% ADA-SYNTACTIC-OBJECT-ATTRIBUTES Z%X%%XXX%%%%%%%ZZXZZXZ

var ADEFINED-NAME map(ada-syntactic-object, identifier-definition) = {I I
var BDEFINED-NAME map(specification-object, identifier-definition) = {I II
var U-NAME map(identifier-definition, string) = {I I
var ADEFINED-NAMES map(ada-syntactic-object, seq(identifier-definition))

= {II1
var EXPRESSION-VALUE map(specification-object, expression) = {I I
var EXPRESSION-LIST map(ada-syntactic-object, seq(expression)) = {I I

form U-NAME-TREE-ATTRIBUTES
define-tree-attributes ( 'identifier-use, {'u-name})

% % % PROCEDURE AND FUNCTION-DECLARATION %%%UCODLA N %%%%%%%

var BLOCK-MAP :ap(ada-syntactic-object, ablock) = {I I}

var AVARIABLE-TYPE map(ada-syntactic-object, var-type) = (III

form PROCEDURE-DECLARATION-TREE-ATTRIBUTES
define-tree-attributes( 'procedure-declaration. {'adefined-name,

'block-mapi);
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def ine-tree-attributes( 'funct ion-declarat ion, {'adefined-name,
'avariable-type,
'block-zap))

%%%%%%%%%%%%%%Z~%X% %7%%%%%X= BLOCKS %%%%%%%%%%%%%XX~XXXX%%%%%%%%%%%%%%%%%

var DECLARATION-PART map (ada-syntactic-object,

seq~declaration:-statement)) {II

var STATEMENT-SEQUENCE map~ada-syntactic-object, seqCAstatement)) -I fill

form ABLOCK-TREE-ATTRIBUTES
define-tree-attributes( 'ablock, {'declaration:-part,

'statement-sequence,
lbdef ined-name})

%%%ZZ%%%%%%%%%%%%%%%%%%%% DECLARATION-STATEMENTS %=%%%XX XXXXXXXX=XXXXX

var VARIABLE-DECLARATION-MAP map (declaration-statement,
variable-declaration) = fill)

var ENUMERATED-DECLARATION-MAP map (declaration-statement,
enumerated-declaration) - fill)

var SUBPROGRAM-DECLARATION-MAP map(declarat ion-statement,
subprogram-declaration) - f ill

var SUBPROG2PROC-DECL map(subprogram-declaration,
procedure-declaration) = fill)

var SUBPROG2FUNC-DECL nap~subprogran-declaration,
function-declaration) - fill

var CONSTANT-OPTION map~variable-declaration, constant-flag) = {I1I
var ENUMERATED-SYMBOL-MAP :map (type-enumerated, identifier-use) - f ill

form DECLARATION-STATEMENT-TREE-ATTRIBUTES
define-tree-attributesC 'declaration-statement, { 'variable-declaration-map,

'enumerated-declaration-map,
'subprogram-declaration-map));

def ine-tree-attributes C 'variable-declarat ion, { 'adefined-name,
'constant-option,
'avariable-type,
'expression-value));

define-tree-attributes( 'enumerated-declaration, { 'adefined-name,
'adefined-names});

define-tree-attributes( 'subprogram-declaration, { 'subprog2proc-decl,
'subprog2func-decl1))

XX%%%XXXXXXXX%%%%%%%%%X%%X%%XXX EXPRESSIONS XXX%%XXX=XXXXXXXXXXXXXXXXXXXXXXX

var ARGUMENT-i: map~expression. expression) - ~~
var ARGUMENT-2: map(expression. expression) -{II
var BOOLEAN-EXPRESSION-VALUE: map (ada-syntact ic-obj ect, boolean-expression)

- {II)
%% --------------------------------------------------------------
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%%X Boolean expressions
XX% --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

form BOOLEAN-TREE-ATTRIBUTES
define-tree-attributes( 'boolean-and, {'argument-i, 'argument-2});
define-tree-attributes('boolean-not, {'argument-i});
define-tree-attributes( 'boolean-or, {'argument-1, 'argument-21);
define-tree-attributesC 'compare-equal, {'argument-l, 'argument-2});
define-tree-attributes(C compare-greater-or-equal, { argument-I,

'argument-21);
define-tree-attributesC 'compare-greater-than, { 'argument-i, 'argument-2});
define-tree-attributes( 'compare-less-or-equal, { argument-i, 'argument-2});
define-tree-attributes( 'compare-less-than, { argument-i, 'argument-21);
define-tree-attributes( 'compare-not-equal, {'argument-l, 'argument-2})

XXX--------------------------------------------------------------
XX% Arithmetic expressions
%%X --------------------------------------------------------------

form ARITHMETIC-ThEE-ATTRIBUTES
define-tree-attributesC'unary-plus, {'argument-1});
define-tree-attributesC'unary-minus, {'argument-l1);
define-tree-attributesC 'arithmetic-add, {'argument-1, 'argument-2});
define-tree-attributes( 'arithmetic-divide, {'argument-i, 'argument-2));
define-tree-attributesC 'arithmetic-modulo, { 'argument-i, 'argument-21);
define-tree-attributesC 'arithmetic-multiply, {'argument-i, 'argument-21);
define-tree-attributes( 'arithmetic-subtract, {'argument-i, 'argument-2});
define-tree-attributesC 'arithmetic-aba, {'argument-11);
define-tree-attributes ('arithmetic-exponent, { 'argument-i, 'argument-2})

%%X --------------------------------------------------------------
%%% Function-call
%%X --------------------------------------------------------------

var ANAME-USE :map(specif ication-object, identif ier-use) ={I

form FUNCTION-CALL-TREE-ATTRIBUTES
define-tree-attributesC 'afunction-call, {'aname-use})

%% --------------------------------------------------------------
XXX Literal-Integer
%%X --------------------------------------------------------------

var INTEGER-VALUE-OF : ap~integer-literal, integer) - {I11I

%XX --------------------------------------------------------------
XXX Literal-Float
%%X --------------------------------------------------------------

var REAL-VALUE-OF :map~real-literal, real) - {I11)

XXX--------------------------------------------------------------
%XX Enumeration-expressions.
%XX --------------------------------------------------------------
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var ENUMTYPE-NAME :map(Enum-eration-expression, identifier-use) ={I

form ENUMERATION-EXPRESS ION-TREE-ATTRIBUTES
define-tree-attributes( 'succ-expression, {'enumtype-name, 'aname-use});
define-tree-attributes( 'pred-expression, {'enumtype-name, 'anaue-use});
define-tree-attributes C val-expression, { 'enumtype-name, 'ezpression-value});
define-tree-attributesC'char-expression, { aname-usel)

%% -----------------------------------------------------------------
%%% Type-Conversion-Expressions
%% --------------------------------------------------------------

form TYPE-CONVERSION-TREE-ATTRIBUTES
define-tree-attributesC'float-to-int. {'expression-value});
defime-tree-attributes C 'mt-to-float, { expression-value})

%%%XXX%%%XXXXXXXXX%%%%%X%% STATEMENTS XXX%%XXXXXXXXXXXXXXXXXXXXX%=%=

var STATEMENT-BODY :map~astatement, astatement) = {I11I

%% -----------------------------------------------------------------
%%% If-Statement
%% -----------------------------------------------------------------

var THEN-PART map(an-if-statement, seq~astatement)) = fillI
var ELSIF-PART map(an-if-statement, seq~elsif-statement)) ={II
var ELSE-PART map(an-if-statement, seq(astatement)) = II
var ELSIF-STATEMENTS : ap~elsif-statement, seq(astatement)) = II
var TEST-CONDITION : ap~an-if-statement, expression) I fill
var ELSIF-TEST-CONDITION : ap~elsif-statement, expression) - fillI

form IF-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes( 'an-if-statement, {'test-condition,

'then-part,
'elsif-part,
'else-part });

define-tree-attributesC 'elsif-statenent, {'elsif-test-condition,

'elsif-statements})

%%X --------------------------------------------------------------
%%% Assignment-Statement
%% ---------------------------------------------------------------

var ALHS :*ap(aassignment-statement, variable-use) {}

form STATEMENT-TREE-ATTRIBUTES
define-tree-attributes( 'aassignment-statement, {'alhs, 'expression-valuel)

%% -------------------------------------------------------------------
%%% Loop-Statements
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var LOOP-ID map(Loop-statement, identifier-definition)- {I }
var EXIT-MAP map(basic-loop, exit-statement) - {II}
var LOOP-STATENENT-SEQUENCE map(loop-statement, seq(astatement)) = {II}
var LOOP-BOOLEAN-EXP map(while-loop, boolean-expression) = {I }
var START-RANGE map(for-loop, expression) - {fil
var END-RANGE map(for-loop, expression) = {fI}

form LOOP-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes ('basic-loop, { 'loop-id,

'loop-statement-sequence));

define-tree-attributes ('for-loop, { 'loop-id,
'laname-use,

'start-range,
'end-range,

'loop-statement-sequence});

def ine-tree-attributes ('while-loop, { 'loop-id,
'loop-boolean-exp,
'loop-statement-sequence))

%% ----------------------------------------------------------
%%% Exit-Statement
%-----------------------------------------------
var EXIT-ID : map(Exit-statement, identifier-definition) = {I II

form EXIT-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes('exit-statement, { 'exit-id, ' expression-value))

%% ----------------------------------------------------------
%%% Read and Write-Statment

%% -----------------------------------------------------------

var READ-VALUE map(Read-statement, variable-use) = ll
var WRITE-EXPRESSION map(Write-statement, expression) f Ill

form I0-TREE-ATTRIBUTES
define-tree-attributes('Read-statement, {'read-value));
define-tree-attributes( 'Write-statement, { 'write-expressionD)

%% -----------------------------------------------------------------
%%% Return-Statment

%% -----------------------------------------------------------------

form RETURN-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes( 'return-statement, { 'expression-valuel)

%% ----------------------------------------------------------
%%% Block-Structure

%% -----------------------------------------------------------

form BLOCK-STRUCTURE-TREE-ATTRIBUTES
define-tree-attributes ('Block-structure, { 'adefined-name,
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'declaration-part,
'statement-sequence,

'adefined-na-e})

%%% Procedure-call

form PROCEDURE-CALL-TREE-ATTRIBUTES
define-tree-attributes( 'Procedure-call, { 'aname-use})
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B.2 OML with Ada PDL Grammar

B.2.1 OML Grammar

%%% File-Nane : oml-g.re (COL grammar productions) %%%

%XX Authors Capt Mary Boom, Capt Brad Mallare %%%

%%% Purpose This file builds the productions that define the grammar XX%
%%% for an OIL specification. When parsing OIL specifications, these XXX
%%% productions ensure that the specifications satisfy the syntax %%%
%%% requirements defined in the OIL BNF. %XX

in-package("ru")
in-grammar('syntax)

grammar OML

inherits-from AdaCs

start-classes informal-model

file-classes informal-model

product ions

informal-model :
["specification" defined-name analysis-obj-map + "" 3
builds informal-model,

% % % % ENTITY OBJECT PRODUCTIONS %%%%PRDCTOS XXXXXXXXXXXXXX

entity-class ::=
[defined-name "class-of" "entity"

"type" ":" (["external" !! external-entity] I "internal")
{["parts" entity-user-decl-map + ";"I)
{["constraints" constraints-map + ";" D]I

builds entity-class,

entity-instance ::=
[defined-name "instance-of"

C ["entity"
"type" ":" (["external" !! external-entity] I "internal")
{ ["parts" entity-user-decl-map + ";"] }]
S[name-use

{["values" entity-user-def-map + ";"]
)

{ ["constraints" constraints-map +
builds entity-instance,

% % % USER-DECLARED-ATTRIBUTE-PRODUCTIONS %%%%%OUTSXXXXXXXXXX

user-declared-attr -
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[defined-name ":" variable-type
(["range" I{" range-attribute "}"D}

{["init-val" (value-map I symbol-val)]} I
builds user-declared-attr,

user-defined-attr ::=
[name-use ":" (value-map I symbol-val)]

builds user-defined-attr,

enumerated-range -
[enum-range-map + ", "]

builds enumerated-range,

integer-range ::-
[integer-low-map "." "." integer-high-map]
builds integer-range,

real-range ::=
[real-low-map "." "." real-high-map]
builds real-range,

%XXXX%%%%%%%XX%%XZ% PROCESS OBJECT PRODUCTIONS Z%%%%XXZZXZZ%%ZXZZX%%Z%

process-object ::-
[defined-name "instance-of" "process"

{ ["constraints" constraints-map + ";"] }]
builds process-object,

XX%% X%%XXX%% ,%XX %XX STATE OBJECT PRODUCTIONS %%XX%%%%XXXXXXX XXXXXXXXXX

state-object ::-
[defined-name "instance-of" "state"

"state-space" ': " state-space-map + '';''

{ ["constraints" constraints-map + ";"] I]
builds state-object,

XX%%%%%%%%%%%%%%%%%%%%% BEHAVIOR OBJECT PRODUCTIONS %X%%%%%%%%%%%%%%%X%%%%%%%%%

decision-table ::-
[defined-name "instance-of" "behavior"

[dt-cond-row-map + ";" ] "-->"

{[dt-action-row-map + ";" ]}
["event "," dt-event-map + "," ]

{ ["constraints" constraints-map + ";" ] }
builds decision-table,

condition-row ::-
[name-use "," condition-entry-map +
builds condition-row,

action-row ::-
[name-use "1," action-entry-map +

builds action-row,

% Name use in the next production allows us to have symbols such as 'safe and
% 'unsafe in the decision tables. It is not a pure use of the map name-use.
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condition-entry ::-
[ (["dont-care" !! dont-care-value] I condition-range I name-use) ]

builds condition-entry,

action-entry ::-
[U action-value I name-use I action-expr)]
builds action-entry,

pre-post-cond ::-
[defined-name "instance-of" "behavior"
behavior-ppc-map + ";1"
{ ["constraints" constraints-map + ";'] }]

builds pre-post-cond,

ppc-statement ::-
[ppc-pre-map + "a" 1"-->" J[ppc-post-map + "O"w}
"event" ppc-event-map]
builds ppc-statement,

process-desc-lang ::=
[defined-name "instance-of" "behavior" pdl-map
{ ["constraints" constraints-map + ";]}]
builds process-desc-lang,

%%%%%%%%%Y XXXXXX%7% STORE OBJECT PRODUCTIONS %XZ%% %%%%%%

store-object ::-
[defined-name "instance-of" "store"

"nature" ":" (["set" !! nature-set-map] I "sequence")
"content" " :1" content-name
{["key" ":" key-name]}
{["order" ":"(["ascending" !! order-set-map] I "descending")]}
{["constraints" constraints-map + ";

builds store-object,

% % % RELATIONSHIP OBJECT PRODUCTIONS %%%RL N O C D NXZZZZX7XXX

relationship-object ::-
[defined-name "instance-of" "relationship"

"type" ":1" rel-type-map
"cardinality" ":" cardinality-map
{ ["constraints" constraints-map + ";"I}I

builds relationship-object,

%%%%%%%%%%%%%%XXZ FLOW OBJECT PRODUCTIONS ZXZZXXXZXXX%•XXZ

flow-object : :-
[defined-name "instance-of" "flow"

"flow-link" ":" flow-link-map
"flow-data" ":" flow-data-map
{ ["constraints" constraints-map + ";1"] }

builds flow-object,

ZXXXX%%XXXXXXXZX EVENT OBJECT PRODUCTIONS %%%%XZX %XX XX XX
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event-object ::
[defined-name "instance-of" "event"

"type" ";" (("internal" ! event-type] I "external")

{["priority" ":" event-priority]}
{ ["constraints" constraints-map + ";"M

builds event-object,

%%%%%%ZZ%%% ZZZ%% RELATION-TABLE OBJECT PRODUCTIONS ZZZZ•%%%%%%%%%%%%ZX

relation-table ::=
[defined-name "instance-of" "relation-table"

relation-sequence + ";"
{ ["constraints" constraints-map + ";"] )]

builds relation-table,

relation ::-
[fro.-obj-sap "," assoc-obj-map "," to-obj-nap]
builds relation,

%%%%Z%% XXZXXXXZXXZZZ IDENTIFIER OBJECT PRODUCTIONS %%XZZXZZXZZXZZZZXZX

identifier-def ::- [ name )
builds identifier-def,

identifier-use ::- [ name ]
builds identifier-use,

%%%%%%%%%%%%%%%%%%%%% LITERAL CONSTANT PRODUCTIONS XZXX%%%%%%%%%%%%%%%%%

integer-literal ::- [ integer-value-of ]
builds integer-literal,

real-literal ::- [ real-value-of ]
builds real-literal,

true-literal ::- [ "true" ]
builds true-literal,

false-literal ::- [ "false" ]

builds false-literal,

string-literal ::- [ string-value-of ]
bui. 2s string-literal,

%%%%%%%% %%%Z%%%%% VARIABLE TYPE PRODUCTIONS %%%%%%ZX %ZXX%%ZZZX

type-boolean ::- [ "boolean" ]
builds type-boolean,

type-string ::- [ "string" ]
builds type-string,

type-symbol ::- [ "symbol" ]
builds type-symbol,
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type-integer : [ "integer" J
builds type-integer.

type-real ::- [ "real" )
builds type-real,

type-set ::- [ "set" ]
builds type-set,

type-sequence ::- [ "sequence" ]
builds type-sequence,

%%%%%%%XXXXXXXXXXXXXXXXXXX FLOW TYPE PRODUCTIONS %%%%%%%%%%%%%%%%X%%XXX%%%

flow-pp ::- [ "proc-proc" ]
builds flow-pp,

flow-ps ::- [ "proc-store" ]
builds flow-ps,

flow-sp ::- [ "store-proc" ]

builds flow-sp,

flow-pe ::- [ "proc-entity" ]
builds flow-pe,

flow-ep ::- [ "entity-proc" ]
builds flow-ep,

%%%XX%%%%%%%%%% CARDINALITY TYPE PRODUCTIONS %%%%%%XXXXXXXX%=%%

One-Many ::- [ "I--," ]

builds One-Many,

One-One ::- [ "1-1" 1
builds One-One,

Many-One ::- [ "a-l" ]
builds Many-One,

Many-Many ::- [ "I-ra"
builds Many-Many,

% % % % EXPRESSION PRODUCTIONS %%%%%%%%XRSOPDCOSXXXXXX %XX

XXX Arithmetic Expressions %%X

arithmetic-add :- [ argument-1 "+" argument-2 I builds arithmetic-add,

unary-minus ::- ". argument-i ] builds unary-minus,

arithmetic-divide :: [ argument-I "/" argument-2 ]
builds arithmetic-divide,

arithmetic-multiply ::- [ argument-i "*" argument-2 ]
builds arithmetic-multiply,
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arithmetic-subtract :: [ argument-I "-" argument-2]
builds arithmetic-subtract,

X Boolean Expressions %%%

boolean-and :: ( argument-i "and" arguznent-2)
builds boolean-and,

boolean-not ::- [ "not" argument-I)
builds boolean-not,

boolean-or ::- [ argument-i "or" argument-2
builds boolean-or,

compare-equal := ET argument-i "."1 argument-2
builds compare-equal,

compare-greater-or-equal :[argument-i ">-" argument-2I
builds compare-greater-or-equal,

compare-greater-than :: argument-i ">" argument-2
builds compare-greater-than,

compare-less-or-equal :: argument-i "<=" argument-2J
builds compare-less-or-equal,

compare-less-than :: ( argument-i 111 argunient-2
builds compare-less-than,

compare-not-equal ::- E argument-i '1/"1 argument-2]
builds compare-not-equal,

compare-in :: argument-i "in" argument-2] UX arg-2 must be a set,
builds compare-in, UX seq or variable

compare-for-all :: ["1orall" "'C name-uses + , )

",,", [set-arg + "I' "o>"f argument-i 9"1"
builds compare-for-all,

compare-exists :: ["exists" ""name-u. as + it'" "91"

"(1" [set-arg + "&") ")911

builds compare-exists,

%%% Set comprehension expressions %%%

set-union :: [argument-i "union" argument-2J
builds set-union,

set-diff :: [argument-i "set-dill" setbuilder-sap
builds set-dill,

getitem ::- [ "getitem" "C" setbuilder-sap")
builds getitem,

getset ::nF"getset" setbuilder-map 1
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builds getset,

setbuilder ::- [ "{" defined-name "I" set-diff-condition + "&" "}" ]

builds setbuilder,

%%% Predicate Range Expressions %%%

r-equal :: ["-" argument ]
builds r-equal,

r-greater-or-equal ::= [">=" argument]
builds r-great er-or-equal,

r-greater-than ::- [">" argument]
builds r-greater-than,

r-less-or-equal ::- ["<=" argument]
builds r-less-or-equal.

r-less-than ::- ["<" argument]
builds r-less-than,

r-not-equal ::- [ "1/" argument]
builds r-not-equal,

%XX%%XX•XX%%XXXXXXXXXXXXX STATEMENT PRODUCTIONS XXXXXXXX%%%XXXXXXXXXX%

assignment-statement ::- [ LHS ":=" RHS)
builds assignment-statement,

create ::- ["create" "C' defined-name ":" name-use "9"1

builds create,

destroy ::- ["destroy" "(" name-use 191

builds destroy,

display ::= ["display" "(" (name-use I display-set ) ")" ]
builds display

%%%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
no-patterns

precedence

for expression brackets "(" matching ")"

(same-level "and", "or" associativity left),

(same-level "<", '<=", "=", ">." , ">" , "/_" associativity none),

(same-level "in", "set-diff", "union" associativity left),
(same-level "+", "-" associativity left),

(same-level "*", "P", "mod" associativity left),
(same-level "**", "abs","not" associativity none)

symbol-start-chars
"abcdf ghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
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symbol-continue-chars
"abcdef ghijklmiopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUWVXYZ0l23456789-."

comments
'T' matching

"*#II" matching "I IV nested

end
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B.2.2 Ada PDL Grammar

H' in-package("ru")
! in-grammar('syntax)

%%% -*- Mode: RE; Package: ADA; Base: 10; Syntax: Refine -*-

811

This file defines the grammar for parsing a subset of Ada called AdaCs.

11#

grammar AdaCs

start-classes procedure-declaration

file-classes procedure-declaration

product ions

arithmetic-add :: ( argument-i "+" argument-2 I builds arithmetic-add,

unary-plus ::= [ "+" argument-I ] builds unary-plus,

unary-minus :: [ ... argument-I ] builds unary-minus,

arithmetic-divide ::- [ argument-I "I" argunent-2 ]
builds arithmetic-divide,

arithmetic-modulo ::- [ argument-i "mod" argument-2 ]
builds arithmetic-modulo,

arithmetic-multiply ::- [ argument-1 "*" argusent-2 ]
builds arithmetic-multiply,

arithmetic-subtract ::- [ argument-I "-" argument-2 ]
builds arithmetic-subtract,

arithmetic-abs ::- [ "abs" argument-i ]
builds arithmetic-abs,

arithmetic-exponent ::- E argument-i "**" argument-2 ]
builds arithmetic-exponent,

aassignhent-statement ::- [ ALHS ":-1" expression-value ";"]

builds aassignment-statement,

boolean-and ::- [ argument-i "and" argument-2 ]
builds boolean-and,

boolean-not : [ "not" argument-i ]
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builds boolean-not,

boolean-or ::- [ argument-i "or" argument-2 ]
builds boolean-or,

compare-equal ::= [ argument-i "=" argument-2]
builds compare-equal,

compare-greater-or-equal :- ( argument-i ">-" argument-2]
builds compare-greater-or-equal,

compare-greater-than ::= [ argument-i ">" argument-2 ]
builds compare-greater-than,

compare-less-or-equal ::= [ argument-i "<=" argument-2 ]
builds compare-less-or-equal,

compare-less-than ::= [ argument-i "<" argument-2 ]
builds compare-less-than,

compare-not-equal ::- [ argument-1 "/-" argument-2]

builds compare-not-equal,

afunction-call ::= [ aname-use ")0")
builds afunction-call,

procedure-call ::- [ aname-use "C0" ";"]

builds procedure-call,

identifier-definition ::= [ name ]
builds identifier-definition,

identifier-use ::- [ name ]
builds identifier-use,

integer-literal : [ integer-value-of ]
builds integer-literal,

real-literal ::- [ real-value-of ]
builds real-literal,

true-literal ::- [ "true" ]
builds true-literal,

false-literal ::- [ "false" ]
builds false-literal,

an-if-statement ::- [ "if" test-condition "then" then-part + ""

{([elsif-part + "" "else" else-part + lilt I
I ["else" else-part + ""I)}"end" "if" ";"]
builds an-if-statement,

elsif-statement
":- [ "elsif" elsif-test-condition "then" elsif-statements + ""]

builds elsif-statement,
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basic-loop
::- [ {[loop-id ":" ]} "loop" loop-statement-sequence +
"end" "loop" ";"]
builds basic-loop,

for-loop
: [ {[loop-id ":"]} "for" aname-use "in" start-range "." "."

end-range "loop" loop-statement-sequence + "" "end" "loop" ";"]

builds for-loop,

while-loop
: [ {[loop-id ":"]1 "while" loop-boolean-exp "loop"

loop-statement-sequence + "" "end" "loop" ";"]
builds while-loop,

return-statement ::- [ "return" expression-value ";"J
builds return-statement,

exit-statement ::- [ "exit" {exit-id} {["when" expression-value]} ";"]

builds exit-statement,

procedure-declaration ::- ["procedure" adefined-name "is" block-map]
builds procedure-declaration,

function-declaration
:= ["function" adefined-name "return" avariable-type "is"

block-map]
builds function-declaration,

block-structure
:: [{[adefined-name ":"]} {["declare" declaration-part * ""J}

"begin" statement-sequence + "" "end" {adefined-name} ";" J
builds Block-structure,

ablock
:- [declaration-part * "" "begin" statement-sequence + "" "end"

{bdefined-name} ";" I

builds ablock,

variable-declaration
:- [adefined-names +"," ":" {constant-option} avariable-type

[" :-I" expression-value]} ";"J
builds variable-declaration,

enumerated-declaration
::- ["type" adefined-name "is" "(. " adefined-names +", ") ";" ]
builds enumerated-declaration,

succ-expression ::- [enumtype-name "'succ" "o(" aname-use")"]
builds succ-expression,

pred-expression ::- [enustype-name "'pred" "(" aname-use")"]
builds pred-expression,

val-expression ::- [enumtype-name "'val" "C" expression-value ")"]

builds val-expression,
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char-expression ::- [anane-use "'char")
builds char-expression,

float-to-int ::- ["integer" "((" expression-value ")"]

builds float-to-int,

int-to-float ::- ["float" "C" expression-value ")"]

builds int-to-float,

subprogram-declaration U:= [ subprog2proc-decl I subprog2func-decl )]
builds subprogram-declaration,

type-enumerated ::= [ enumerated-symbol-map]
builds type-enumerated,

type-boolean ::- [ "boolean" ]
builds type-boolean,

type-string ::- [ "string" ]

builds type-string,

type-integer ::= [ "integer" ]
builds type-integer,

type-float ::- [ "float" J
builds type-float,

Constant-flag ::- ["constant"]
builds Constant-flag,

Read-statement ::= ["read" "C" read-value ")" "o ;"]

builds Read-statement,

Write-statement
::= ["write" "(" write-expression ")" "91 ;"1

builds Write-statement

no-patterns

precedence

for expression brackets "'" matching ")"

(same-level "and", "or" associativity left),
(same-level "<", "<=I", " "" ",>", "IV-" associativity none),
(same-level "+", "-" associativity left),
(same-level "'", "/", "mod" associativity left),

(same-level "**", "abs", "not" associativity none)

symbol-start-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

symbol-continue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKILMNOPQRSTUVWXYZ0123456789_."
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comments
"--" matching "

"i %% "--" to end-of-line

UX brackets "(" matching ")",
U "[" matching "]"

end
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Appendix C. Object Modeling Language REFINE Implementation

C.1 Translation Software

X%% File-Name : Trans-Ol.re XXX

%%% Authors Capt Mary Boom, Capt Brad Nallare %%X

%XX Purpose : This program parses an OHL specification into a Refine %%%
%%% Abstract Syntax Tree (AST) and then translates the AST %%%
XXX representation into an executable Refiue source code program. %%%

%%% Dependencies : Prior to compiling this program, the following programs %%%
%%% must be compiled and loaded into the Refine database: XX%

XXX Dialect %%%
%%% dm.re %%%
%%% gm.re %%X
%%% r-lib.re %XX
%%% lisp-utilities. lisp XXX

%%% Functions : %X
%%% Convert %XX
%%% Trans %%%
%%% Print-Class-Decl %XX
XXX Print-Instance-Decl %XX
XXX Print-Attr-Value XXX
XXX Print-Store-Function XXX
XXX Print-Flow-Function XXX
XXX Print-Behavior-Rule XXX
XXX Print-Decision-Table XXX
XXX Print-Pre-Post-Condition %%%
XXX Convert-Attr-Same %%%
XXX Find-State XX%
XXX Print-Action-Entry XXX
%%% Print-State-Function XXX
XXX Print-State-Behaviors %%%
XXX Print-Proc-Function %XX
XXX Add-State-Sim-Function XX%
XXX Add-Proc-Sim-Function XXX
XXX Print-Predicate-Expression XXX
XXX Print-Statement %%%
XXX Print-Expression %%%
XXX Print-Delete-Object-Function %%%
XXX XXX

XXX Operation : After loading this program and the required programs XXX
XXX mentioned above, type the following commands at the Refine prompt: XXX
XXX XXX

XXX (convert "<your-OML-file-name>") %XX

XXX The name of the generated executable specification will be displayed XXX
XXX on the screen. Additionally, the executable specification will be XXX
XXX automatically compiled and loaded. XXX
XXX XX9
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XXX Once the OHL specification has been converted into an executable XXX
XXX Refine specification, the specification can be executed by typing XX%
X%% the following command: %%%

%%% (sin) %%%

%%% If a control structure was not provided in the OML spec, then the %XX

XXX user will be prompted to make control decisions during the simulation XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

!! in-package ('RU)
H in-grammar ('user)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX GLOBAL VARIABLES XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX Global variables are in all CAPS throughout this file

type ATTR-REF = tuple(old-name : string, uniq-name : string)
var OML-OBJ : object-class subtype-of user-object
var ATTR-NAME-TABLE : set(ATTR-REF) = { % X attribute name table
var ROOT : object - undefined XX root of the AST
var EXT-EV-SET : set(symbol) = } XX set of all external events
var INITIAL-STATE : symbol = undefined X start state-lst state in OML file
var TILDE : string " -"1
var OBJ-NAMES set(symbol) = {} X set of all object instance names

var PROC-NAMES : set(symbol) = {U X set of all process object names

var FLOW-NAMES : set(tuple(name : symbol, flow-type : symbol)) = {}
X set of all flow names and types

var STORE-NAMES: set(syubol) - {}
var EXTERNALS-NAMES: set (symbol) {}

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CONVERT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX This is the main function. It parses in the OML file and calls the
XXX translation function (trans). The converted file is then compiled and
XXX loaded into the Refine object base.

function convert(filename : string) =

(let(source-file : string - ""1

X parses in OML spec and ensures that the top object is an informal model
if informal-model (pf (filename)) then

(ROOT <- oml-rooto; XX find the root of the AST

X (if ses(ROOT) then XX semantic checks the file
U (if tcheck(ROOT) then XX type checks the file

source-file <- trans(ROOT);

compile-file (source-file);
load(source-file);
format(true,"To run, keyin \"(sin)\"'X") )

U else
U format (true, "You must f ix type mismatches before compilation"))

U else
U format(true,"You must fix semantic errors before compilation"))))
U source-file <- trans(ROOT) )
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else format(true, "file must begin with a specification declaration")

)

%%% This function enumerates over the various objects in the AST and calls the
%%% appropriate functions which translate the AST objects into a REFINE
%% executable.

function trans(o:object) -

let(Fname : string = "onl",
New-Fname : string - "oml.re")

(if informal-model(o)
then

Fname <- princ-to-string (name (defined-name (o)));
New-Fname <- concat(Fname, ".re"l);
format(true, "Translating to -A .... -%", New-Fname);

(enumerate obj over
[obj I (obj : ONL-OBJ) ONL-OBJ(obj)] do

erase-object(obj) );

PROC-NAMES <- {};

rd-on(New-Fname); %redirect standard output to file

format(true, "1!! in-package ('RU)YI");
format(true, "1!! in-grammar ('user)'V-");

format(true, "var OML-Obj : object-class subtype-of user-object'-%X");
format(true, "var -A : object-class subtype-of OML-Dbj-%-%", Fname);
(if ex (x) (State-Object(x)) then

format(true, "type return-values = tuple(validity: symbol,
events: seq(symbol),
behaviors : seq(symbol),
st-behaviors : seq(symbol))-%-%")

elseif ex Wx) (Process-Object(x)) then
format(true, "type return-values - tuple(validity: symbol,

next-procs : seq(symbol))-%-%")

format (true, "\%\%\% Define object classes -%'%");

(enumerate vars over
descendants-of-class(o, 'Entity-Class) do

print-class-decl(vars, Fname);
if defined? (external-entity(vars)) then

EXTERNALS-NAMES <-
EXTERNALS-NAMES with name (defined-name (vars)) );

format (true, "\%\%\% Define instances of object classes "'-");

(enumerate instance over
descendants-of-class(o, 'Entity-Instance) do

print-instance-decl(instance, Fname);
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OBJ-NkMES <- OBJ-NAMES with name(defined-name(instance));
if defined?(external-entity(instance)) then

EXTERNALS-NAMES <-
EXTERNALS-NAMES with name(defined-name(instance)));

format (true, "\%\%\% Define Store Objects X-");

(enumerate sto over

descendants-of-class(o, 'Store-Object) do
print-store-function(sto);

STORE-NAMES <- STORE-NAMES with name(defined-name(sto)));

format (true, "\%\%\% Define objects for each flow object "~");

(enumerate flow over

descendants-of-class(o, 'Flow-Object) do
print-flow-function(flow);

OBJ-NA•ES <- OBJ-NAMES with name(defined-name(flow));
FLOW-NAMES <- FLOW-NAMES

with (<name(defined-name(flow)) ,name(flow-data-map(flow))>));

format (true, "\%\%\% Define functions for behavior objects "Z");

(enumerate beh over
descendants-of-class(o, 'Behavior-Object) do

print-behavior-rule (beh));

U create a set of all external events
(enumerate ev over

descendants-of-class(o, 'Event-Object) do
if undefined?(event-type(ev)) then U checks if external event

EXT-EV-SET <- EXT-EV-SET with name (defined-name (ev)) );

format (true, "\%\%\% Define function for each state object -%");

(enumerate state over

descendants-of-class(o, 'State-Object) do
print-state-function(state);

if state - last(set-to-seq(descendants-of-class(o, 'State-Object)))
then INITIAL-STATE <- name(defined-name(state)) );

(if -empty (descendants-of-class (o, ' State-Object)) then
Add-State-Six-Function(Fname));

format (true, "\%\%\% Define function for each process object "X');

(enumerate proc over
descendants-of -clams (o,'Process-Object) do

PROC-NAMES <- PROC-NAMES with name(defined-name(proc));

print-proc-function(proc));

(if -empty(descendants-of-class(o, 'Process-Object)) then
Add-Proc-Sim-Func 0);

format (true, "
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\%\%\% Defines function for erasing all objects in Refine's database.

\%\%\% Execute this function before you reload this file if you do not use

\%\%\% the convert process. -%-%");

Print-Delete-Obj ect-Function(Fname);

rd-offC); X return to writing standard output

valuesC) 0 Xprevents "nil" from being returned at end of program

else format(true, "file must begin with a specification declaration"));
princ-to-string(name(defined-name(o))) X return file name sans ".re"

XXXXXXXXXXXXXXXXXXXXXX PRIXT-CLASS-DECL XX%%XXXXXXXXXXXXXXXXXXXXXXXX%

U Top-obj is the top level object name in the specification
U Class-name is the current object-class name. If the object class is a
U class-of an entity object, then the object class name will be used to

U identify it. If the object class is an instance-of an entity object then
U the class name concatenated with "-ENTITY" will be used to identify that

U object class.

function print-class-decl (vd : object, top-obj ! string) -

%%% This section prints out the object class definitions

let(class-name string = undefined,
attr-name string = undefined,

u-attr-name : string = undefined,
x-ref : ATTR-REF - <undefined, undefined>)

class-name <- princ-to-string(name(defined-name(vd)));

(if entity-class(vd) then UX it is a class of an entity object
format (true, "var -A : ", class-name);

format (true, "object-class subtype-of 'A -", top-obj)

else U it is an instance of an entity object
class-name <- concat (princ-to-string (name (defined-name (vd))), "-ENTITY");

format (true, "var -A : ", class-name);

format (true, "object-class subtype-of -A X", top-obj)

% This section declares the attributes of each object class. Each attribute
% is declared as a variable which maps the object class to the attribute type.
% The attribute names are translated into the class-name concatenated with the
X attribute name to ensure that all variable names are unique.

(if defined? (entity-user-decl-map(vd)) then
(enumerate id over entity-user-decl-nap(vd) do

attr-name <- princ-to-string(name(defined-name(id)));
u-attr-name <- concat(class-name, "-", attr-name);
format (true, "var -A: ",u-attr-name);
format (true, " map(-A, ", class-name);

( if type-integer(variable-type(id)) then
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format (true, "integer")
elseif type-boolean(variable-type(id)) then

format (true, "boolean")
elseif type-real(variable-type(id)) then

format (true, "real")
elseif type-string(variable-type (id)) then

format (true, "string")
elseif type-symbol(variable-type(id)) then

foruat(true, "symbol")
else format(true, "type declaration error")

format(true, ") {II}X" );

x-ref.old-name <- concat (class-name, ".", attr-name);

x-ref.uniq-name <- concat (u-attr-name, "(", class-name, ")");

ATTR-NANE-TABLE <- union(ATTR-NANE-TABLE, {x-ref})

);format (true,"')

%%%%%%%%%%%%%%% PRINT-IISTAICE-DECL XXXX%%%XXXXXXXXXXXX%%%
U This function creates instances of class objects. Instances are made by
U creating a FORM statement which defines the instance object and sets the
X attributes for that object.

functi-n print-instance-decl (inst : object, file-name : string) =

let(class-nam: string - undefined,
object-name string - undefined,
attr-name : string - undefined,
u-attr-nase : string = undefined,
x-ref : ATTR-REF - <undefined, undefined>)

%%% If an object is an instance (as opposed to a class) of Entity, then we must
XX% declare an object class as well as instantiate that class. Thi.s section
%%% declares object classes for instances of entity objects

(if undefined?(name-use(inst)) then
print-class-decl (inst, file-name)

XX% This section creates an instance of the object class

object-name <- princ-to-string(name(defined-name(inst)));

(if defined?(name(name-use(inst))) then U it is an instance of a class
class-name <- princ-to-string(name (name-use (est)));
format (true, "var -A : -A - 31",

name (def ined-name (inst)), name (name-use (inst)));
format (true, " set-attrs(make-object("A),X%", name(name-use(inst)));
(if defined? (ent ity-user-def-map(inst)) then

format (true, " 'namis, 'eA,X, name(defined-name(inst)))
else
format (true, " 'name, '*-A)X%", name(defined-name(inst)))

)
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else %% it is an instance of an entity
class-name <- princ-to-string(name(defi-ned-name~inst)));
format (true, "var -:-A =-%o

name(defined-name(inst)), concat(class-name, "-ENTITY"));
format (true, " set-attn. a(make-objectC( A) ,-

,concat(class-name, "-ENTITY"));
(if defined?(entity-user-decl-map(inst)) then

format (true, ) name, )*-A,-%", name(defined-name(inst)))
else
format (true, "'name, '*~A)-%", name (defined-name~inst)))

(if defined? (entity-user-def-map~ixkst)) then
enumerate attr over entity-user-def-sap(inst) do
attr-name <- princ-to-string(name (name-use (attr)));
u-attr-name <- concat(class-name, "-", attr-name);
format (true, "1 '-A, 11, u-attr-name);
print-attr-value (attr);

UX this creates a table that cross-references attribue names used in behaviors
UX with the names as they are actually stored in the system

x-ref .old-name <- concat(object-name, ".,attr-name);

x-ref uniq-name <- concat Cu-attr-name, "(,object-name, ")T9

ATTR-NANE-TABLE <- union (ATTR-IhlIE-TABLE, {x-ref});

(if attr neq last (entity-user-def -map inst)) then
format(true, ",-%")

else
lormat (true,") )

elseif def ined?(entity-user-decl-map(inst)) then
enumerate attr over entity-user-decl-uap(inst) do
attr-name <- princ-to-string(name(defined-name Cattr)));
u-attr-name <- concat (class-name, "-ENTITY-", attr-name);
format (true, "1 '-A, "1, u-attr-name);
print-attr-value (attr);

UX this creates a table that cross-references attribue names used in behaviors
UX with the names as they are actually stored in the system

x-ref old-name <- concat (class-name, ".", attr-name);
x-ref uniq-name <- concat (u-attr-name, "(", class-name,");
ATTR-NANE-TABLE <- union (ATTm-NAM-TABLE, {r-ref 1);

(if attr neq last (entity-user-decl-map(inst)) then
format (true. 11,39

else
format (true, 9-%")

foruat(true,"

XXX%%X%%XXXXXXXXXXXXXXXXXXXXX PRINT-ATTR-VALUE %XX%%%%%XXXXXXXXXXXXXXXXX%
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U determines attribute type and prints out the actual value of the attribute

function print-attr-value (attr : object) -

(if defined?(value-map(attr)) then
(if integer-literal(value-map(attr)) then

format (true, "-A"l, integer-value-of(value-map(attr)))
elseif real-literal(value-map(attr)) then

format (true, "`A, real-value-of (value-map(attr)))
elseif string-literal(value-map(attr)) then

format (true, "-S", string-value-of (value-map(attr)))
elseif true-literal(value-map(attr)) then

format (true, "true")
elseif false-literal (value-map(attr)) then

format (true, "false")
else format(true, "bad value")
)

else
format (true, "'A", symbol-val(attr)) )

%%%X%%%%%%%%%%%%%%%%%%%%%%%% PRIIT-STORE-FUNCTION %%%%XX%%%XXXXXXXXXXXXXX
U This function transtates each store object into a variable which contains
UX a SET of objects. The type of the objects in the set is determined by the
U content name attribute of the store. Further consideration must be given
UX to modeling stores as SEQUENCES of information. Currently, the rest of the
UX translation software assumes these store objects are modeled as sets.

function print-store-function(obj : object) I

% if nature-set-sap(obj) then
format(true, "var -A setWA) =

name(defined-name(obj)), name(content-name(obj)));
format(true, "{x I (x -A) -A(x)}JXX-",

name(content-name(obj)), name(content-name(obj)))

% else
% format(true, "var -A seq(-A) "
% name(defined-name(obj)), name(content-name(obj)));

% format(true, "{x I (x -A) -A(x)}'XXP",
% name(content-name(obj)), name(content-name(obj)))

%%%%%%%XXX%%%%%%XX%%%%% PRINT-FLOW-FUICTION %%%%%%%%%XXXXXXXXXX%%%XXXXX
U Flow objects are translated into unique objects. The object type is
U determined by the flow object's flow-data attribute. Once the object is
%X created, its attributes (as they appear in behavior objects) must be given
U unique attr names and added into the ATTR-NAIE-TABLE. Flows are translated
U before behavior objects.

function print-flow-function(flow-obj : object) -

let(obj-name string undefined,

class-obj object - undefined,
class-name string - undefined,
attr-name string - undefined,
u-attr-name : string - undefined,

x-ref : ATTR-REF - <undefined, undefined>)

obj-name <- princ-to-string(name (defined-name (f low-obj)));

format (true, "var -A : -A - -%",

206



name Cdefimed-nameCf low-obj)), nameCf low-data-map(f low-obj)));
format (true, set-attrs~make-objectC'-A) CX"

,nameCf low-data-map(f low-obj)));
format (true, 'name, '*-A)-%-", name(defined-name~flow-obj)));

class-obj <- arbC{ x I Wx x in analysis-obj-map (root) & entity-class~x) &
name (defined-name Cx)) a nameCf low-data-map~f low-obj) ) );

(if defined?(entity-user-decl-map(class-obj)) then
enumerate attr over entity-user-decl-map~class-obj) do

attr-name <- princ-to-string (name (def ined-name Cattr)))
class-name <- princ-to-string~nameCf low-data-map~f low-obj)));
u-attr-name <- concat(class-name, "-,attr-name);

x-ref .old-name <- concat Cobj -name, '~*,attr-name);

x-ref.uniq-name <- concat(u-attr-name, "'C, obj-name, ")
ATTR-NANE-TABLE <- union(ATTR-NANE-TABLE, {x-ref 1) )

%%%%%%XXXXXXX%%%%%%X PRINT-BEHAVIOR-HULE XXXXXXXXXXXXXXXXX%%%%%

UX Determines the type of behavior object (i.e. PDL, DT, or PPC) and
UX translates the behavior into a Refine function with transform rules
UX Print flag denotes whether a NON dont-care value has been found and printed

function print-behavior-rule Co :object) =

XXX Converts a DT into a Refine function %%%

if decision-table Co) then
print-decision-table Co);
format Ctrue, 'A\%\%\%\%\%\%\%\%\%\%\X% -%-")

UX Converts a PPC into a Refine function

elseif pre-post-cond~o) then
print-pre-post-condition~o)

UX Converts a PDL into a Refine function

X elseif process-desc-lang~o) then
% trans-ada~o) UX calls PDL translation function in trans-ada.re

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX PRIIT-DECISION-TABLE XXXXXXXXXXXXXXXXXXXXXXXXXXX

%%% Translates DT objects into Refine

function print-decision-table~o :object)

let(nun-rules integer - undefined,
print-flag boolean - false)

nun-rules <- size Ccondition-entry-map~dt-cond-row-uap~o) Cl)));

XU prints out the function name and declares a local variable
format~true, 'function -AO: symbol -X%", name (def ined-name~o)));
format (true, " let (return-symbol :symbol - undefined)-%-");
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format (true, "(31");

C enumerate i from 1 to nun-rules do
print-flag <- false; U reset print-flag

%% prints out preconditions for each rule
(enumerate row over dt-cond-row-map(o) do

U if entry is not dont-care
if undefined? (dont-care-value (condit ion-entry-map (row) (i))) then

(if print-flag then
format (true, " & 1);

format (true, "CA ", convert-attr-name(name(name-use(row))));
print-predicate-expression(condit ion-range (

condition-entry-map(row) (i)));
format (true, ")31")

else
format (true, " (-A ", convert-attr-name(name(name-use(row))));
print-predicate-expression(condition-range (

condition-entry-map(rov) Ci)));
format(true, *)-%");
print-flag <- true

)

format (true, " -- >-%"); U print out the transform symbol

%% print out the postcondtions for each rule
print-flag <- false; U reset print-flag
(if defined?(dt-action-row-map(o)) then
(enumerate row over dt-action-rov-map(o) do

if print-flag then
format (true, " & ");
format (true, "(-A ", convert-attr-name(name(name-use(rov))));
format (true, '<- ");
print-action-entry (action-entry-nap(rov) (i));
format (true, ") 31)

else
format (true, " (-A ", convert-attr-name(name(name-use(rov))));
format (true, "<- 9);
print-action-entry (action-entry-smap(row) (i));
format(true, 939");
print-flag <- true

)

%% returns the name of the next state if a next event is specified

(if name(dt-event-sap(o) (i)) -- 'none then
let (next-state : symbol - undefined)

next-state <-
find-state(name(defined-naae(o)), name(dt-event-map(o) (i)));

(if print-flag then
format (true, " k ");
format (true, "(return-symbol <- 'A", next-state)

else
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format (true, " (return-symbol <- I'A", next-state)

XX add semicolon between transforms (rules) and line feeds
(if i -- nun-rules then

format (true, ");-X")

else
format (true, ")--"))

format (true, ") ; "return-symbol%")

%%%%%%%%%%%%%%%%%%%%%%%%%%% PRINT-PRE-POST-CONDITION %%%%%%%%%%%%%%%%%%%%%%%%%%%

XX% Translates PPC objects into Refine. Currently converted into If-Then
XX% structure. Once PDL is fully integrated, recommend PPCs be converted into
%%% transform construct which is a better description of "what" must be done.

function print-pre-post-condition(o : object) -

format(true, "function -AO -- %", name (defined-name(o)));
format(true, " let(return-symbol : symbol - undefined)-%-%");
format (true, " ( ");
(enumerate ppc over behavior-ppc-map(o) do

X prints out preconditions for each rule
(enumerate precond over ppc-pre-map(ppc) do

(if precond = first(ppc-pre-map(ppc)) then

format (true, "(if ");

print-expression(precond);
format (true, "-")

else
format (true, " and ");

print-expression(precond);
format(true, "X")

)

); % ends enum precond

format (true, " then-%"); X print out the transform symbol

XX prints out postconditions for each rule
(if defined? (ppc-post-map(ppc)) then

( enumerate postcond over ppc-post-map(ppc) do

(if postcond -- last(ppc-post-map(ppc)) then
format(true, " (") ;
print-statement (postcond);

format(true, ") ;T")
else

format(true, "(");

print-statement (postcond);

format(true, ")X")
)

) X ends enum postcond

X if a next event is specified, find the name of the next state associated

XX with that event and assign the name to return-symbol
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(if name(ppc-event-map(ppc)) -- 'none then
let (next-state : symbol - undefined)

next-state <-
find-state(name(defined-name(o)), name(ppc-event-map(ppc)));

(if defined?(ppc-post-map(ppc)) then
format (true, " ;");
format (true, "(return-symbol <- '-A", next-state)

else
format (true, " (return-symbol <- '-All, next-state)

)

X add semicolon between transforms (rules) and line feeds
(if ppc -= last (behavior-ppc-map(o)) then

format (true, ');-FX")
else

format (true, ")")
)

); U ends enum ppc

format (true, 'I);- return-symbol-%-") U returns name of next state

%XXXXX%%%%XXXXX%%%%%%%XX% CONVERT-ATTR-NIAE XXX%%XXXXXXXXX%% XXXXXXXXXX%

%XX Searches for the original name in the OHL table and returns the unique
%%% attribute name

function convert-attr-name(o : symbol)

let (new-name : string = undefined)
new-name <- princ-to-string(o);
(enumerate a over ATTR-NAME-TABLE do

if s. old-name - new-name then

new-name <- s.uniq-name);
new-name U return the unique name

XXXXXX%%% XXX% XXXXXXXXXXXXXXXXXXX%% FIND-STATE XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

%%% Given the event name declared in a behavior rule, this finds the next state
%%% to transition to.

function f ind-state (behavior-name: symbol,
event-name : symbol) -

let (current-state : symbol = undefined,
next-state : symbol - undefined)

(enumerate entry over descendants-of-class(ROOT,'Relation-Table) do
if behavior-name - name(to-obj-nap(entry)) then

current-state <- name(from-obj-map(entry))

(enumerate entry over descendants-of-class(ROOT,'Relation-Table) do
if current-state - name(from-obj-map(entry)) and

event-name - name(assoc-obj-map(entry)) then
next-state <- name(to-obj-map(entry))
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next-state

%% % X•X PRINT-ACTION-ENTRIES %%XX%%%%ZXXZX%%XXXXXXZ%

%%% Called by Print-Decision-Table, this function determines the type of the
% action entry element and prints out the element

function print-action-entry(o : object) -

if integer-literal(action-value(o)) then
format(true, " -D", integer-value-of(action-value(o)))

elseif real-literal(action-value(o)) then
format (true, " -D", real-value-of (action-value (o)))

elseif false-literal(action-value(o)) then
format(true. " false")

elseif true-literal (action-value(o)) then
format(true, " true")

elseif string-literal(action-value(o)) then
format(true, " -S", string-value-of(action-value(o)))

elseif identifier-use(name-use(o)) then
let (temp string = undefined,

dot char = A.)
temp <- princ-to-string(name-use(o));
(if dot in temp then

format(true, " -A", convert-attr-name(name(name-use(o))))
else

format(true, " "A", name(name-use(o)))
)

elseif arithmetic-expression(action-expr(o)) then
print-expression(action-expr(o))

else format (true, " Oh Oh, value type is not defined.")

% %%% XX PRINT-STATE-FUNCTION %%%%%%XXXXXZXXXXZXXXXXZXX%

%%% This function translates each state object into a function.
%%% The state space attribute is used to test whether the system's current state
%%% satisfies the state space values. If the state space is valid, then a
%%% list of valid events, event-behaviors, and state behaviors will be created.

function print-state-function (o : object) =

let (valid-str string - "-% VALID STATE SPACE'-",
invalid-str string - "1- INVALID STATE SPACE-%",
valid-ext-ev seq(symbol) - [],
valid-ev-beh seq(symbol) - [J,
state-beh seq(symbol) - ])

U creates a seq of valid external events for the state and a seq of valid
U behaviors associated with each external event. The ith element in each set
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U are associated with each other.

(enumerate entry over descendants-of-class (ROOT, 'Relation-Table) do
if name(to-obj-map(entry)) - name(defined-name(o)) and

name(assoc-obj-map(entry)) in EXT-EV-SET then
valid-ext-ev <- concat(valid-ext-ev, [name(assoc-obj-map(entry))]);
(enumerate temp over descendants-of-class(ROOT,'Relation-Table) do

if name (from-obj-map (temp)) - name (assoc-obj-map (entry)) and
name(assoc-obj-map(temp)) -'ICO then

valid-ev-beh <- concat (valid-ev-beh, [name(to-obj-map(temp))])
)

U print function name and writes the two sequences above into the translated

U file

format(true, "function ~AO : return-values -'-". name(defined-name(o)));
format (true, "let (valid-ext-event : seq(symbol) P);
(enumerate ext-ev over valid-ext-ev do

if ext-ev -- last(valid-ext-ev) then
format (true, "'-A, ", ext-ev) Xseparate elements with comas

else
format (true, "'-A", ext-ev)

format (true, "] ,'%"); %close the sequence

format (true, " valid-event-beh : seq(symbol) = " [9;
(enumerate ev-beh over valid-ev-beh do

if ev-beh -- last (valid-ev-beh) then
format (true, "'-A, ", ev-beh) %%separate elements with commas

else
format (true, "'-A", ev-beh)

format (true, 111,31"); Uclose the sequence

state-beh <- print-state-behaviors(name(defined-name(o)));
format (true, " state-beh : seq(symbol) - [');
(enumerate st-beh over state-beh do

if st-beh -- last(state-beh) then
format (true, "'-A, ", st-beh) %%separate elements with commas

else
format (true, "'A", st-beh)

format (true, "],'%"); Uclose the sequence

format (true, " return-tuple : return-values - undefined)3-");

format (true, " format(true, \"The current state of the system is -S\");-%",

name (defined-name (o)));

U print if statement to check if the state-space is correct

format (true, " (if -% ");

(enumerate expr over set-to-seq(state-space-map(o)) do

print-expression(expr);
if expr -- last (set-to-seq(state-space-map(o))) then
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format(true, " and-% ")
else

format(true, "X then-")

X if state-space is correct

format (true, " format(true, -S);-%", valid-str);
format (true, " return-tuple <- <'valid, valid-ext-event,

valid-event-beh, state-beh>-X");
format(true, else"%");

U if state-space is incorrect

format (true, format(true, -S); X", invalid-str);
format (true, " return-tuple <- <'invalid, [], ("A], state-beh>) ;-X",

name(defined-naue(o)));
U send return-tuple back to calling function

format (true, " return-tuple 3");
format(true, "-3")

%%XXXXXXXXXXXXXXXXXXXXXXXX PRINT-STATE-BEHAVIORS XXXXXXXXXXXXXXXXXXXXXXXXXX

function print-state-behaviors(state-name: symbol) -

let (behavior : seq(symbol) - [J)

(enumerate entry over descendants-of-class(ROOT,'Relation-Table) do
if state-name - name(from-obj-map(entry))

and name (assoc-obj-map (entry)) - 'ICO then
behavior <- prepend(behavior, name (to-obj-map(entry)))

behavior X return the seq of behaviors associated with the state-name

XXXXXXXX%%XXXXXXXXXXXXXXXX PRINT-PROC-FUNCTION %XXZXXXXXXXXXXXXXXXXXXXXXXXXX

XXX This function translates ONL process objects into Refine functions. Each
XX% time the Refine function is called, it will perform one of two major tasks:
%XX 1- check if all inflows are satisfied.
XXX 2- execute process behavior and return info to calling function

function print-proc-function(proc : object) -
let(proc-name : symbol = name(defined-name(proc)),

all-inflows : seq(syubol) - ],
inflow-objs : set(object) -
int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) - [],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) - [,
next-procs : seq(symbol) - [])

XX creates a seq of in-flows for the process

(enumerate entry over descendants-of-class (ROOT, 'Relation-Table) do
if name(to-obj-map(entry)) - name(defined-name(proc)) and

name (assoc-obj-map(entry)) -- 'ICO then
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all-inflows <- concat(all-inflows, [(name(assoc-obj-map(entry)))])

U get flow objects k make a set of their names and types

inflow-objs <- {x I (x:object) flow-object(z) &
name(defined-name(x)) in all-inflows};

(enumerate flow over inflow-objs do
if flow-pp(flow-link-map(f low)) then

int-flow-set <- append(int-flow-set.
(<name(flow-data-map(flow)), name (defined-name(flow))>))

elseif flow-ep(flow-link-map(flow)) then
ext-flow-set <- append(ext-flow-set,

(<name (flow-data-map(flow)), name(defined-name(flow))>))

U writes the flow-set sequences above into the translated file

format(true, "function -A(dowhat : symbol) : return-values -~",proc-name);

format (true, "let (int-flow-set seq(tuple(flow-type : symbol,
flow-name : symbol)) - );

(enumerate flow over int-flow-set do
if flow -= last(int-flow-set) then

format (true, "<'A, '*-A>,", flow.flow-type, flow.flow-name)
else

format (true, "< 'A, '*A>", flow.flow-type, flow.flow-name)

format (true, ")X") ; Xclose the sequence

format (true, " ext-flow-set : seq(tuple(flow-type : symbol,
flou-name : symbol)) - 3

(enumerate flow over ext-flow-set do
if flow -- last(ext-flow-set) then

format (true, "<'A, '*-A>,", flow.flow-type, flow.flow-name)
else

format (true, "<'A,'*-A>", flow.flow-type, flow.flow-name)

format (true, "1,39"); UXclose the sequence

format (true, " intflows-valid : boolean - false,
check-flow : object = undefined,
return-tuple : return-values - <'invalid, 0>)~-•" );

U check to see if all inflows are valid:
U gather all the inflow objects related to the process, enumerate
X over the attributes, checking if they are defined.

U return-attribute-list function is defined in file obj-utilities.re
U it expects an object as input k returns a set of refine bindings

format(true, "(if size(int-f low-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));
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(if douhat - 'execute then
(if intflows-vafld then UX if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex Wx (x in return-attribute-list (check-flow) &

undefined?Cretrieve-attribute(check-f low, x)))) then-%'9

format Ctrue, "format (true, \"Enter data for -AAA\X\"I,
name (check-f low));-%", tilde, tilde);

format(true, 11 check-flow <- modify-object(check-flow)));% '9);

(enumerate entry over descendants-of -class (ROOT, 'Relation-Table) do
if proc-name - name (fron-obj -map (entry))

and name(assoc-obj-zap(entry)) - 'ICO then
f ormat (true, ' AOC; %XX", name (to-.obj -map (entry)))

UX set inflows to invalid data

format(true, " (enumerate flow over concat(int-f low-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list (check-f low) do

store-attribute(check-f low, flow-attr, undefined)));-%");

XX f ind next-processes that can be executed & add then to the f ile.

(enumerate entry over descendants-of -class(ROOT, 'Relation-Table) do
if proc-name - name (fron-obj-map (entry))

and name(assoc-obj-aap(entry)) -- '100
and name(to-obj-nap~entry)) -in STORE-NAJIES
and name (to-obj-map (entry)) -in EXTERNALS-NAMES

then
next-procs <- append(next-procs, name (to-obj-map(entry)))

format(true, return-tuple <- <'valid, [9
(enumerate proc over next-procs do

if proc -- last(next-procs) then
format (true, "'-A,", proc)

else
format (true, '" proc)

format (true, 11)>'X"); XUclose the sequence

format(true, else-%"); XX if int-f lows are not valid, notify user
format(true, "format(true, \"Process cannot be executed.

All in-flows are not defined. 'A\X") ;X". tilde);
format(true, " return-tuple <- <'invalid, [J>YX);

format(true, "else

if intf lows-val id then return-tuple <- <'Ival id, 0 >
else return-tuple <- <'invalidD>);X'");

format(true, "return-tupleXX")9;
format(true, " \%\%\%\XX%")

%X%%XXXXXXXXXXXXXXXXXXX ADD-STATE-SIMULATION-FUNCTIOI XX%%XXXXXXXXXXXXXXXXX
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%%% This function adds a state simulation function to the translated file.

%%% It is only added when the OML spec has state based information in it.

function add-state-sim-function(Name : string)
format (true, "function sim() -%");

format (true, "let (sfunction : return-values = undefined,
st-name : symbol - 'A, %% assume first state in OHL file is initial
done boolean = false,
reply integer - undefined)-%-", INITIAL-STATE);

format (true, " while -Adone doV", tilde);
format (true, " sfunction <- funcall(st-name);

(if sfunction.validity = 'valid then
reply <- Make-Menu(sfunct ion. events, \"Events that can occur:\");
(if Reply <= size(sfunction.events) then

funcall (sfunct ion .behaviors (reply));

enumerate st-beh over sfunction.st-behaviors do
st-name <- funcall(st-beh)

elseif Reply = size(sfunction.events)+2 then
done <- true %% selects quit

)
else UX not valid state

done <- true;-%");
format (true, "format (true, \"The system's current state space conflicts with

the state space required to be in the above mentioned state. Here are the
current attribute values in the system. Compare then with the required values
specified in your specification to find the inconsistencies. A\%\");-X-%", tilde);
format (true, " (enumerate obj over [obj I (obj : -A) ~A(obj)] do-%",

Name, Name);
format (true, " (enumerate attr over Return-Attribute-List(obj) doX");
format (true, " format(true, \" -AA.-AA : -AA'A\%\",name(obj), name(attr),

retrieve-attribute(obj, attr))X%", tilde,tilde,tilde,tilde);

format (true, " M)%-%")

%%%%%%%%%%%%%%%%%%%%%%%%% ADD-PROC-SINULATION-FUNCTION X%% XXXXX%%%% X%%%%%%%X
%%% This function adds a process simulation function to the translated file.
%%% It is only added when the OWL spec has process based information in it.

function add-proc-sim-func() -
let(initial-procs : set(symbol) = PROC-NAMES)

format (true, "function sim() -%");

format (true, "let (pfunction : return-values = undefined,
done boolean - false,

reply integer - undefined,

test return-values - undefined,
valid-procs seq(syabol) = [,

init-procs seq(symbol) [

(enumerate pname over PROC-NAMES do
(enumerate entry over descendants-of-class(ROOT, 'Relation-Table) do

if pname - name(to-obj-map(entry)) then

if ex (x) (flow-object(x) A
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name(defined-name(x)) - name (assoc-obj-map(entry)) &
"flow-ep(flow-link-map(x))) then

initial-procs <- initial-procs less pname

",enumerate pname over set-to-seq(initial-procs) do U prints intitial procs
if pname -- last(set-to-seq(initial-procs)) then

format (true, "'-A, ",pname)
else

format (true, "'A", pname) );

format (true, "J)%-V"); Uclose the sequence

U 1- display list of all processes and ask user to select initial process
U 2- Execute the process. Process returns a tuple <valid, next-procs>
U 3- If valid then display list of potential next processes to execute.

format (true, " reply <- Make-Menu(init-procs,

\"Choose one of these processes to initialize the sinulation:\");-%");

format (true, " (if Reply <- size(init-procs) then
pfunction <- funcall(init-procs(reply), 'execute);
while -Adone doV", tilde);

format (true, " valid-procs <- 0;
(if pfunction.validity - 'valid then

(if size(pfunction.next-procs) > 0 then
(enumerate proc over pfunction.next-procs do

test <- funcall(proc, 'check);

(if test.validity - 'valid then
valid-procs <- append (valid-procs, proc)));

reply <- Make-Menu(valid-procs,
\"Select a process that may potentially execute at this point:\");

(if Reply <- size(valid-procs) then

pfunction <- funcall(valid-procs(reply), 'execute)
elseif Reply - size(valid-procs)+2 then

done <- true) UX selects quit
else pfunction.next-procs <- init-procs)

else U not valid process

done <- true))-%")

% % % % PRINT-PREDICATE-EXPRESSIONS UUUUP-I- SSX XXX

function print-predicate-expression (o object) -

if r-equal(o) then
format(true, " - ");
print-expression(argument (o))

elseif r-not-equal(o) then
format(true, " -A- ", tilde);
print-expression(argument (o))

elseif r-greater-than(o) then

format(true, " > ");

print-expression(argument (o))

elseif r-greater-or-equal(o) then
format(true, " > ");
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print-expression(argument ())

elseif r-less-than(o) then
format(true, 11 < 11);
print-expression(argument (a))

elseif r-less-or-equal(o) then
format(true, "1 <- ");

print-expression~argument (o))

else
I ormat(true, "not looking at right thing-V)

%%%%%%%%%%%%%%%%%%%%%%%% PRINT-STATEMENTS ZZXX XX XXXXXXXXXXXXXX

function print-statement (stat :object)

if assignment-statement(stat) then
(if ex(x,y,z,w) ( x - name(LHS(stat)) &(<x,y>) in FLOW-NAMES

ft z - naue(RHS(stat)) &t C<z,v>) in FLOW-NAMES )then
fornat(true, "assign-object('*-A, '*A, 'A)-%",

nameCRHS~stat)), name(LHS~stat)),
arb({y I (x :symbol, y :symbol) x - name(RHS(stat))

At C<x,y>) in FLOU-IAMES})))
else
format(true, "All, convert-attr-name(name(LHS(stmt))));
format(true, "1 <- 'I);

print-expression(RHS (stat)))

elseif display (stat) then
(if defined? (name-use~stat)) then

format (true, "format (true. \"'A\\\\pp\\\\ \" ,-A) ",tilde,
convert-attr-name (name (name-use (stat))))

else if defined? (display-set (stat)) then
format(true, "enumerate element over %)
print-expression(display-set (stat));
format(true, "do%)

format(true, " foraat(true, \11A\\\\pp\\\\ \",element)",tilde)

% elseif create(stut) then

% elseif destroy(stat) then

XXXXX%%%%%X%%XX%%%%%%%X%%XXX% PRINT-EXPRESSIONS XXXXXXX%%XXXXXXXXXXXXXXXXXXXX

function print-expression (o object) -

if integer-literal~o) then I ormat(true, 11D", integer-value-of (o))

elseif real-literal (o) then format (true, "IG", real-value-of (o))

elseif true-literal (o) then format (true, "true")

elseif false-literal (a) then format (true, "false")
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elseif identif.Ler-use~o) then
let (temp string - undefined,

dot char -A.
temp <- princ-to-string~name(o));
(if dot in temp then

format(true, "All, convert-attr-name(name(o)))
elseif name(o) in OBJ-NANES then U% is argument an object name?

format(true, "-V. name~o))
else

format(true, "VA, name(o))

elseif string-literal (o) then f ormat (true, "S" ,string-value-of (o))

elseif arithmetic-add(o) then
format(true, "C');
print-exrpression(argument-1 (o));
foruat(true. " + "1);

print-expression(argument-2(o));
f ormat (true, "1)"1)

elseif arithmetic-subtract Co) then
format(true, "('9;
print-expression(argument-1(o));
format(true, " - 'I);

print-expression(argument-2Co));
format(true, 'T)"

elseif arithmetic-ifultiply(o) then
format (true, "(");

print-expression~argument-i~o));
format(true, " * '9);
print-expression~argument-2(o));
f ormat (true, 19)11)

elseif arithmetic-divide(o) then
format(true, "C');

print-expression(argument-1 Co));
% (if type- integer (type-of -expression(argument- I (o)) then

%format(true, " div "

% else format(true, /');
format(true, " / 'I);

print-expression~argument-2(o));
format(true, IT)"

elseif unary-minus(o) then
format (true, "minus(");
print-expression(argument-i(o));
format(true, '9")

elseif boolean-and(o) then
format(true, "C");
print-expression(argument-l~o));
format(true, " & 1)
print-expression(argument-2 Co));
f ormat (true, '"
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elseif boolean-or~o) then
format~true, "C");
print-expression~arguzent-i~o));
format(true, " or )
print-expression(arguaent-2Co));
f ormat (true, "1)"1)

elseif boolean-not Co) then
foruat(true. "-AC",tilde);
print-expression~argument-1 (o));
f ormat (true, '9") )

elseif coupare-equal~o) then
format (true. 'T');
print-expression(argument-l~o));
format (true. " -I)
print-expression(argument-2(o));
f ormat (true, "1)"1)

elseif compare-not-equal~o) then
format(true, "(");
print-expression(argument-1 Ca));
format (true, 1 -A- ", tilde);
print-expression(argument-2Co));
foruat~true, ")")

elseif compare-greater-than~o) then
format (true, "(1");
print-expression~argument-1 Co));
format~true, 11 > *9);

print-expression~argument-2 Cc));
format~true, 1")")

elseif compare-greater-or-equal Co) then
format~true, "l(");

print-expression~arguaent-l(o));
foruat~true, 1>- 11);
print-expression(argument-2 Cc));
format (true, 9")"

elseif compare-less-than(o) then
format~true, "C");
print-expression(argument-l~o));
format (true, " < "1);

print-expression~argument-2(o));
f ormat (true, "1)"1)

elseif compare-less-or-equal Ca) then
format~true, "C");
print-expression~argument-i~o));
format~true, "1 <- 9;
print-expression(arguuent-2Co));
f oruat (true, "1)"1)

elseif coupare-in~o) then
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format(true, 'T')9; UX don't want 'argu-name
format Ctrue, "A", name (argument-iOC));
format~true, "1 in ");

format (true, "A", name (argument-2(o)));
format~true, '")"

elseif compare-f or-ali~o) then
format~true, "(fa C"1);
(enumerate name over name-uses Co) do

print-expression~name);
if name -= last (name-uses~o)) then

format~true,","

format~true, "'9");
(enumerate expr over set-arg~o) do

print-expression~expr);
if expr -- last Cset-to-seq~set-arg~o))) then

format~true, "&X "

format~true,
print-expression(argument-i Co));
format(true, "9)")

elseif compare-exists Co) then
format(true, "Cex C"1);
(enumerate vars over name-uses Co) do

format~true, `V", name(vars));
if vars -- last (name-uses~o)) then

format~true,","

format(true,")C;
(enumerate expr over set-arg(o) do

print-expression(expr);
if expr -- last (set-to-seq(set-arg(o))) then

format(true," X "

format~true,")"

elseif set-union~o) then
format(true, "C");
format (true, "-All, name(argument-1 Co)));
format(true, " with copy-object(");
print-expression~argument-2Co));
format(true, "9)")

elseif set-diff Co) then
format(true, "C");
f ormat (true, "'setdif fC");
format(true, `A, ", name~argument-i~o)));
print-expression(setbuilder-map(o));
format(true, 99";
f ormat (true, "1)"1)

elseif getitem~o) then
format~true, "C');
format(true, "arb C");
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print-expression(setbuilder-map(o));
format(true, "))")

elseif getset(o) then
format(true, "(");

print-expression(setbuilder-map(o));
format (true, ")")

elseif setbuilder(o) then
format(true, "*{A I (-A) ",name(defined-name(o)) ,name(defined-name o)));

(enumerate cond over set-diff-condition(o) do

print-expression(cond);
if cond -= last (set-diff-condition(o)) then

format(true, " " )

else
format(true, "}") )

%%%%%%%%%%%%%%%%%%%%%%%% PRINT-DELETE-OBJECT-FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%
%%% Writes a function that will clear the object base.

function Print-Delete-Object-Function(Name : string) -

format (true, "function clear-objectsO
(enumerate obj over [obj I (obj : -A) -A(obj)) do-%", Name, Name);

format (true, " erase-object(obj))-%")

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PRINT-ATTR-TABLE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
UX This function is used to print the table that holds the original entity names
XX and attribute names and the converted entity names and attribute names. This

%% function is only used for debugging purposes.

function PintO -
enumerate d over ATTR-NAME-TABLE do

format(true, "OLD: -A, NEW: -A-%",
d. old-name, d.uniq-name)

function PonO = UX short for print object name
enumerate d over OBJ-NAMES do

format(true, "A -%", d)
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C.2 Utilities

The some of the following code was developed by Capt Mary Anne Randour is extremely
useful for REFINE object manipulation.

!! in-package ('RU)
! in-grammar ('user)

#11
function symbol-2-index(enum-seq : seq(symbol), val : symbol) : integer =

let (i : integer = 1)
(while (val -= enum-seq(i)) and (i < size(enum-seq)) do i <- i + 1);
(if i > size(enum-seq) then

format(true, "Error: enumeration symbol not defined"));
i

function int-2-char(i : integer) : string =

princ-to-string(code-char(i))

function val (enum-seq : seq(symbol), index : integer) : string =

princ-to-string(enum-seq(index))
11#

%% erases Refine database so that ada-trees are not concatenated together
function erase() =

enumerate o over
Eo I (o : OML-object) OML-object(o)] do

erase-object (0)

function oml-root () =
up-to-root(arb( {w I (w : informal-model)

oml-object(w)} ))

function pf(filename) =
let(g=find-object('re: :grammar, 'oml))
erase();
parse-file(filename, false, g, g, find-package("RU"));
mcn(oml-root C))

%.--------------------------------------------------------------

function do-rule-search() =

rse)

' ---------------------------------------------------------------
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#11

File name: menu.re
Author : Capt Mary Anne Randour
Description: Contains functions that will query the user for a selection
from a list of possible choices

Rules: lone

Functions: Make-Menu
Make-Object-Menu

History:
13 Aug - Baselined
25 Aug - Added a quit line
1 Sep - Added continue line

I I#

" Given a sequence of symbols and a prompt string, this function displays

the prompt, lists all of the symbols in the sequence, and prompts the
user for a selection. If the selection is not in the proper range
(i.e., between 1 and the size of the sequence), it displays an error

message and reprompts for a selection"

function Make-Menu(Menu-Choices : seq(symbol), Prompt : string) : integer =

let (Response : integer = size(Menu-Choices) + 3)
(while Response > size(Menu-Choices) + 2 or Response < I do

format(t, "'s '%", Prompt);
(enumerate index from I to size(Menu-Choices) do

format(t, "-d ) -s -%", index, Menu-Choices(index))

format(t, "d ) Continue "%", size(Menu-Choices)+l);
format(t, "d ) Quit "%I, size(Menu-Choices)+2);
Response <- Read-Integer(.".);
if Response > size(Menu-Choices) + 2 or Response < I then

format(t, "Invalid Response "")
); % end while

Response

" Same as above execept it takes a list of objects and uses the name
to display the choices"

function Make-Object-Menu(Menu-Choices : seq(object),
Prompt : string) : integer =

let (Response : integer = size(Menu-Choices) + 3)
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(while ((Response > (size(Kenu-Choices) + 2)) or-else (Response < 1)) do
format(t, "1s -%", Prompt);
(enumerate index from 1 to size(Menu-Choices) do

format(t, "'d ) 's -%", index, name(Menu-Choices(index)))

format(t, "d ) Continue "%11, size(Kenu-Choices)+1);
format(t, "d ) Quit %"1, size(Kenu-Choices)+2);
Response <- Read-Integer("");
(if Response > size(Menu-Choices) + 2 or-else Response < 1 then

format(t, "Invalid Response %")
)

); % end while
Response

function assign-object(copy-from: symbol, copy-to:symbol, object-type: symbol) =

(enumerate flow-attr over return-attribute-list(find-object(object-type,
copy-from)) do

store-attribute(find-object(object-type, copy-to),
flow-attr,
retrieve-attribute(find-object(object-type, copy-from),

flow-attr))
)

% finds users

function fuab (x: set(object)) =

enumerate user over x do
format(true, " \\pp\\', user)
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; File name: lisp-utilities.lisp

SDescription: Contains lisp utililities

Rules:
None

Functions:
Read-Input
File-Exists
RD-On
Rd-Off
other unused functions

History:
Baselined - 13 Aug

;;; reads input, returns a number or a string
(defun read-input-orig 0)

(let* ((input (read-line))
(stripped (read-from-string input))) ; strips the quotes

(cond
((numberp stripped) stripped)
(t input) ) ) )

;;; read the input as above, doesn't bomb if user hits return
;; Returns either a string or a number

(defun read-input 0)

(let* ((input (read-line))
(stripped (read-from-string input nil ))) ; strips the quotes,

doesn't return error
if just hit return

(cond
((numberp stripped) stripped)

(t input) ) ) )

;; Tests if the given file-name exists
(defun File-Exists (file-name)

(cond ( (probe-file file-name) t)
(t nil))

)
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;; These functions have been handed down from ???

;;; redirect *standard-output* to a file, format statements will write
;;; to the specified file. It's turned off by RD-Off
(defun RD-On (file)

(setq *old-std-output* *standard-output*
*standard-output* (open file

:if-exists :supersede

:if-does-not-exist :create
:direction :output) ))

;;; redirect *standard-output* to *old-std-output*
(defun RD-Off C)

(cond ( (streamp *old-std-output*)
(close *standard-output*)
(setq *standard-output* *old-std-output*) )

(') ) ))

;; Not used yet

;;; write output to a file

(defun write-report (x file)
(with-open-file (stream file :direction :output)

(write-report-to-stream stream x) ))

;;; redirect *error-output* to a file
(defun Error-RD-On (file)

(setq *old-err-output* *error-output*
*error-output* (open file

:if-exists :supersede
:if-does-not-exist :create
:direction :output) ))

;;; redirect *error-output* to *old-err-output*
(defun Error-RD-Off ()

(cond ( (streamp *old-std-output*)
(close *error-output*)

(setq *error-output* *old-err-output*) )
(') ) ))
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;; redirect *debug-io* to a file
(defun Debug-RD-On (file)

(setq *old-debug-io* *debug-io*
*debug-io* (open file

:if-exists :supersede
:if-does-not-exist :create
:direction :output) ))

;;; redirect *debug-io* to *terminal-io*
(defun Debug-RD-Off 0)

(cond ( (streamp *old-std-output*)
(close *debug-io*)
(setq *debug-io* *old-debug-io*) )

('(0) ))
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in-package("RU")
in-grazmar ('user)

File name: read-utilities.re

Description: Contains functions that read in different data types. They perfrom all
type checking so the calling program is guaranteed to get a value of the correct
type. The read with defaults allows the calling program to send a default value.
If the user enters return, this value is returned.

Rules:
None

Funct ions:
Read-String
Read-Integer
Read-Real
Read-Symbol
Read-Boolean
Read-Any-Type
Read-Yes-Or-No
Read-String-Default
Read-Integer-Default
Read-Real-Default
Read-Symbol-Default
Read-Boolean-Default
Read-Any-Type-Default

History:
13 Aug - Baselined
21 Aug - Changed formats to use -a instead of -s so the are not

displayed as part of the prompts.

I,#

var Null-Value : any-type - ""

% what read-input returns if given a carriage return

" Used to tell the valid types that can be read using these functions
This will allow programs to test if a symbol is in Valid-Types so it can build
the function call and use the lisp funcall call to invoke the proper program.
This avoids big if-then-elseif statements "

var Valid-Types : set(symbol) {'string, 'integer, 'real, 'symbol,
'boolean, 'any-type)

S----------Read Functions-------------------------------

% Contains functions to read in data of a specific data type. If the input is
% not valid, it reports the error, and prompts for another value

% -------------------------------------------------------------------------22---
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function Read-String(Prompt : string) : string-
(if "empty(Pronpt) then

foruat(t, "-A: ", Prompt)

let ( str : any-type = read-inputo))
(if lisp: :numberp(str) then % if a number was read,

str <- lisp: :princ-to-string(str) % convert it to a string

(while "lisp::stringp(str) do
format(t, "-%Invalid input, try again: ');
str <- read-inputO

str

function Read-Integer(Prompt : string) : integer =

(if "empty(Prompt) then
format(t, "-A:", Prompt)

let ( int : integer = read-input0))
(while "lisp::integerp(int) do

format(t, "-%Invalid input, try again: ");
int <- read-inputO

int

function Read-Real(Prompt : string) : real
(if -empty(Prompt) then

format(t, "-A: ", Prompt)

let ( real-num : real - read-inputO)
(while -lisp: :floatp(real-num) do

format(t. "Xlnvalid input, try again: ");
real-nun <- read-inputO)

real-num

function Read-Symbol(Prompt : string) : symbol-
(if "empty(Prompt) then

format(t, "-A: ", Prompt)

let ( syn : string - read-inputO))
(while "lisp::stringp(sym) do

foraat(t, "~lnvalid input, try again: ");
sym <- read-inputo

string-to-symbol (lisp: : string-upcase (sym), '1RU")
SNOTE: I convert the string to upper case so that it can be compared
% to other symbols
% string-to-symbol returns a symbol that is case sensitive
% (it is quoted by 1's)
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function Read-Boolean(Prompt : string) : boolean-
(if "empty(Prompt) then

format(t, "-A: ", Prompt)

format(t, "(T/t for true, F/f for false): ");

let(t-or-f : string - read-inputO)
(while -(t-or-f in {"F", "f", "T", "t"}) do

format(t, "~Invalid input, try again: ");

t-or-f <- read-input()

t-or-f in {"T", "t"1

function Read-Any-Type(Prompt : string) : any-type-
(if ~empty(Prompt) then

format(t, "`A: ", Prompt)

read-input C)

"This function had problems if the user entered a number. I now keep
reading new input if I read a number. I tried using stringp(y-or-no)
and-then y-or-no in f...., but that didn't help"

#ii
function Read-Yes-Or-No(Prompt : string) : boolean

% Returns true if user enters y or Y, false if user enters n or N
(if ~empty(Prompt) then

format(t, "A ", Prompt)

let (y-or-no : string - read-inputO))
(while lisp: :numberp(y-or-no) do

format(t, "`Invalid input, try again: ");

y-or-no <- read-inputO

(while y-or-no -in {"y", "Y", "n", "N"} do
format(t, "`Invalid input, try again: ");

y-or-no <- read-inputO);
(while lisp: :numberp(y-or-no) do

format(t, "~lnvalid input, try again: ");

y-or-no <- read-inputO
)

y-or-no in {"Y", "y"}
I IS

% Here's another way to do this
function Read-Yes-Or-No(Prompt : string) : boolean-

lisp: : y-or-n-p (prompt)

S- Read Functions With Defaults-----------------------

%%% Read functions that allow for a default value
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function Read-String-Default (Prompt : string, Default : string) : string-
(if "empty(Prompt) then

format(t, "A", Prompt)

format(t, (-A): ", default);
let ( str any-type - read-input())

(if lisp: :numberp(str) then % if a number was read,
str <- lisp: :princ-to-string(str) % convert it to a string

(while "stringp(str) and -(lisp: :equal(str, Null-Value)) do
format(t, "-%Invalid input, try again: "));
str <- read-inputC)

Af lisp: :equal(str, Null-value) then
Default

else
str

% For reading in integers and real numbers, read in as a string (so it can be
% compared to the null--,alue and check if the string is really an integer
% or real number (using the read-from-string function). Read-from-string
% returns two values, the first is what's in the string, the second is the index
% of the first character NOT read.

% --------------------------------------------------------------------------
function Read-Integer-Default(Prompt : string, Default : integer) : integer

(if ~empty(Prompt) then
format(t, "-A:", Prompt)

format(t, (d): ", default);

let ( int : string lisp: :read-lineO)
(while -lisp::integerp(lisp: :read-from-string(int)) and int Null-Value do

format(t, "-%Invalid input, try again: ");
int <- lisp: :read-lineO

if int - Null-value then
Default

else
lisp: :read-from-string(int)

% ---------------------------------------------------------------------------
function Read-Real-Default(Prompt : string, Default : real) : real-

(if ~empty(Prompt) then
format(t, "-A: ", Prompt)

format(t, " (d): ", default);
let ( real-num : string - lisp: :read-lineO)

(while -lisp:: floatp (lisp:: Read-from-string (real-num)) and real-num - Null-Value do
format(t, "~lnvalid input, try again: ")9;
real-num <- lisp: :read-line()

if real-nun - Null-value then
Default

else
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lisp: :read-from-string(real-nua)

function Read-Symbol-Default(Prompt : string, Default : symbol) : symbol-
(if -empty(Prompt) then

format(t, "-A: ", Prompt)

fortat(t, " (A): ", default);

let ( sym : string = read-inputO)
(while -lisp: :stringp(sym) and sym -- Null-Value do

format(t, "-%Invalid input, try again: ");
sym <- read-input()

if sym = Null-value then
Default

else
string-to-symbol (lisp: : string-upcase (sym), "RU")

% NOTE: I convert the string to upper case so that it can be compared to
% other symbols string-to-symbol returns a symbol that is case sensitive
% (it is quoted by 1's)

% ------------------------------------------------------------
function Read-Boolean-Default(Prompt : string. Default : boolean) : boolean =

(if -empty(Prompt) then
format(t, "-A ", Prompt)

format(t, "(T/t for true, F/f for false:) ");
format(t, " (-A): ", default);

let(t-or-f : •tring - read-input C)
(while -(t-or-f in {"F", 'f", "T", "t"}) and t-or-f -= Null-Value do

format(t, "`Invalid input, try again: ");
t-or-f <- read-inputO

if t-or-f - Null-value then
Default

else
t-or-f in {"T", "t"'

function Read-Any-Type-Default(Prompt : string, Default : any-type) : any-type =

(if -empty(Prompt) then
format(t, "A: ", Prompt)

format(t, " (A): ", default);
let (ans : any-type - read-inputO)

if lisp::equal(ans, Null-value) then % use the lisp: :equal incase of strings
Default

else

ans
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! in-packageC"RU")
! in-grammarC'user)

#It

File name: obj-utilities.re

Description: This file contains functions useful when manipulating objects,
regardless of the domain model being used.

Rules:
none

Functions:
Return-Attribute-List
Tell-Set-Seq-Type
Tell-Set-Seq-Binding
Get-Attribute-List (For testing and debugging)
Tell-Type
Copy-Object

History:
Baselined - 13 Aug

iI#

% ------------------------------------------------------------
"The type-map gives a conversion from the Refine representation of
data types to simple symbols (Note: strings are handled differently so
they aren't in this list"

var Type-Map : map(symbol, symbol) =
{I 're::poverset-op -> 'set,

're::powersequence-op -> 'seq,
're::symbol-op -> 'symbol,
Ire::real-op -> 'real,
're::integer-op -> 'integer,
're::boolean-op -> 'boolean,
're: :any-type-op -> 'any-type ll

" REFINE's attributes"
var predefined-attributes : set (symbol) -

{ 'RE: : -- TOP-LEVEL-PREPENDUJ--,
'RE: : STORED-PROPERTIES,
'RE:: BROWSER-MENU-STRING-FOR-NAMED-OBJECT--SAME-PACKAGE,
'RE:: BROWSER-MENU-STRING-FOR-NAMED-OBJECT--OTHER-PACKAGE,
'RE:: ORDERED-CHILDREN-ATTRIBUTES,
'RE:: CONSTRUCTION-FUNCTION-ATTRIBUTE-ARGS,
'RE: :CONSTRUCTION-FUNCTION,
'RE:: REFINE-INTERNAL?,
'RE: :QUOTED?,
'RE: :LISP-GETFN,
'RE:: LISP-INITIALIZE,
'RE: :LISP-FUNCTION,
'RE:: ALREADY-WARNED-ABOUT,
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'RE: :SUBPART-OF,
'RE: :SUBPARTS,
'RE: :CONPILATIONS,
'RE: :ZL-DOCUMENTATION,
'RE: :USED-BY,
'RE:: MENTIONED-BY,

'RE: :DATA-TYPE,
'RE:: CHILDREN-ENVIRONMENTS,

'RE:: PARENT-ENVIRONMENT,
'RE: :COPY-OF,

'RE: :BINDING-VALUE-OF,
'RE:: PARENT-LINK-NANE,
'RE: :PARENT-LINK,

'RE: :CLASS,
'RE: :ELEMENT-OF,
'RE:: PROPS-FRON-READER}

"Given an object, returns a set of bindings that represent the attributes

removing the predefined attributes"

function Return-Attribute-List(Obj : object) : set (re: :binding)
{atrs I (atrs) (atra in class-attributes(instance-of(obj), true)) a

"(name (atrs) in predefined-attributes)}

"Returns all of the subclasses of an object, NOT including the original
object class"

function Get-SubNodes(obj-type: re: :binding) : set(re: :binding) f
let (tempset : set (re: :binding) - class-subclasses(obj-type, false) )
tempset less obj-type % don't include the original object type

"This function determines the type of the set/seq attribute. If the type
is an object, it returns the object class name"

function Tell-Set-Seq-Type(attr : re: :binding) : symbol =

let (its-type : object - re: :base(re: :range-type(re: :data-type(attr))))
if re: :class(its-type) = 're::binding-ref then

re::bindingname(its-type) % returns 'string or '(object-type)
else

Type-Map (re: :class (its-type))

"Returns the type of a set or sequence as a binding (assumes its
some object type)"

function Tell-Set-Seq-Binding(attr : re: :binding) : re: :binding =

re: :ref-to(re: :base(re: :range-type(re: :data-type(attr))))
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"displays all of the user-defined attributes and their types. If want to see
all the attributes, don't comment any lines, if only want to see the
user-defined attributes, comment out the line: if -(name(atr) in

predef ined-attributes) then"

function Get-attribute-list(obj : object) =

let (attr-list : set(re: :binding) = class-attributes(instance-of(obj), true))
format(t. "attributes are: -%");
enumerate atr over attr-list do

% if -(name(atr) in predefined-attributes) then
format(t, "attr: -s type -s "%1, atr, tell-type(atr))

% -------------------------------------------------------------
" Goes through the abstract syntax tree for the representation of the attribute

to find out the attribute's data type. Since all attributes are maps, we need
to look at the range-type of the data-type. Both objects and strings have the

same representation at this level so there's a special test for those. Other-
wise, it uses the Type-Map to translate the type to a simpler-form."

function Tell-Type(attr : re: :binding) : symbol -
let (its-type : object = re::range-type(re::data-type(attr)))

if re: :class(its-type) - 're::binding-ref then
if defined? (re: :bindingname (its-type)) and-then

re: :bindingname(its-type) = 'string then

'string

else
'object

else
Type-Map (re: : class (its-type))

% -------------------------------------------------------------
"makes a copy of an object, the calling routine must name the new object
used instead of copy-term because copy-term cannot be used with unique names
classes see refine manual pg 3-194. An alternative could be to undefine the
name, then copy it. This is a problem if the object contains any named
objects. This function handles any case (that I can think of)"

function Copy-Object(from-obj : object) : object I

let (Attrs : set(re::binding) - Return-Attribute-List(fron-obj),
To-Obj : object - make-object(name(instance-of(fron-obj))))

(enumerate attrib over Attrs do

% if it's an object, copy the object and assign the new one

% to the attribute
(if tell-type(attrib) - 'object then

let (sub-obj : object -
Copy-Object(retrieve-attribute(fron-obj, attrib)))

store-attribute(to-obj, attrib, sub-obj)
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elseif tell-type(attrib) = 'set then

let (temp-set :set (any-type) - {})
% if it is a set of objects, copy each object,
% otherwise copy the set

(if defined? CFind-Object-ClassCTell-Set-Seq-TypeCAttrib))) then %object
enumerate Set-Item over Retrieve-Attribute(Fron-Obj. Attrib) do
Temp-Set <- Temp-Set with Copy-Object (Set-Item)

else
Temp-Set <- Retrieve-Attribute CFrom-Obj, Attrib)

Store-Attribute CTo-Obj, Attrib, Temp-Set)

elseif tell-type(attrib) - 'seq then

let (temp-seq :seq(any-type) - E])
% if it is a seq of objects, copy each object,
% otherwise copy the seq

(if defined? (Find-Object-Class (tell-set-seq-type (attrib))) then
%- object

enumerate seq-item over retrieve-attribute(from-obj, attrib) do
temp-seq <- append~temp-seq, copy-object(seq-item))

else
temp-seq <- retrieve-attribute~from-obj, attrib)

store-attribute (to-obj, attrib, temp-seq)

else %not a set, seq, or object

store-attribute (to-obj, attrib, retrieve-attribute Cfrom-obj, attrib))
% end if
%; end enumerate

To-Obj % return the object
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'I in-package("RX')
in-graumar('user)

XU This object class is defined here as an initialization. The actual OML-obj
%% is further defined in the translated executable OML specification.

var ONL-Obj : object-class subtype-of user-object

var Changes-Made : boolean = false

Xvar Spec-Parts : map(CML-Obj, seq ) = {II}

'11
File name: nodify-obj.re

Description:
The functions in this file allow the user to modify objects - delete
objects, edit existing objects, and add new objects

Rules:
Edit-An-Object
Add-An-Object
Delete-An-Object

Functions:
Modify-Some-Object
Modify-Object
Update-Attr
Find-Subnode
Make-New-Object
Read-Set
Read-Seq
Is-Valid-New-Type
Add-Object
Delete-Object

History:
Baselined 13 Aug

l1i

XX Rules that can be performed by the user

rule Edit-An-Object(X: object)
% Do not change the name to edit-object, it exists already)

true -- > Modify-Some-Object(x)

rule Add-An-Object(X: Object)
true -- > Add-Object(x)

rule Delete-An-Object(X: Object)
true -- > Delete-Object(X)

%X---------------------------------------------------------------------
"Aaks the user for the name of the object, checks that it is a subclass of

component object (i.e., its a subsystem or primitive domain object), and then
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Modifies the object"

function Modify-Some-Object(X : object) -

let (obj-to-edit : symbol -
Read-Symbol-Default ("Enter the name of the object to edit", Name(x)))

let (Edit-Obj : object - find-object('OML-Obj, obj-to-edit))
if defined?(Edit-Obj) then

Changes-Made <- true;
Edit-Obj <- Modify-Object (Edit-Obj)

else
format(t, "Object -s is not a current object that can be edited-%", obj-to-edit)

" Given an object, goes through each attribute that's not one of the predefined
attributes and gets a value for it"

function Modify-Object (obj : object) : object =

(enumerate atr over return-attribute-list(obj) do

update-attr(obj, atr)

Obj

% -----------------------------------------------------------
"Given an object and an attribute, finds the data type of the attribute,

calls the appropriate read function, and stores the value in the attribute.
If the attribute is an object, it first creates an object of that type
(re: :bindingname(re: :range-type(re: :data-type(attribute-binding)))) and

then gets the information for that object "

function Update-Attr(for-obj : object, attrib : re: :binding) =

let (attr-type : symbol = tell-type( attrib),
prompt : string - concat("Enter ", symbol-to-string(name(attrib))),

current-value : any-type - Retrieve-Attribute(for-obj, attrib) )

if attr-type = 'real then
store-attribute(for-obj, attrib, read-real-default(prompt, current-value))

elseif attr-type - 'integer then
store-attribute (for-obj, attrib, read-integer-default (prompt, current-value))

elseif attr-type = 'string then
store-attribute (for-obj, attrib, read-string-default (prompt, current-value))

elseif attr-type - 'boolean then
store-attribute(for-obj, attrib, read-boolean-default (prompt, current-value))

elseif attr-type - 'symbol then
store-attribute(for-obj, attrib, read-symbol-default(prompt, current-value))

elseif attr-type - 'any-type then
store-attribute(for-obj, attrib, read-any-type-default (prompt, current-value))

elseif attr-type - 'object then
if defined?(current-value) then %object already exists, just update it

store-attribute(for-obj, attrib, Modify-Object (current-value))
else
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store-attribute(for-obj, attrib,
Nake-New-Object(re: :ref-to(re: :range-type(re: :data-type(attrib)))))

elseif attr-type - 'seq then
format(t, "-s-%", prompt); % Read-Seq doesn't print this prompt
store-attribute(for-obj, attrib, read-seq(attrib, current-value) )

elseif attr-type - 'set then
format(t, "`s%", prompt); % Read-Set doesn't print this prompt
store-attribute(for-obj, attrib, read-set(attrib, current-value) )

else
format (t, "Unrecognized type "s -%", attr-type)

#11

"Sets the spec object to be the parent of the new object
could instead have a rule:
true -- > Parent-Expr(Kid) - parent & kid in spec-parts(parent)"

function Set-To-Parent(Kid, Parent : object) -
Spec-Parts (Parent) <- append(Spec-Parts (Parent), Kid)

"Removes the kid from the parent object"

function Remove-From-Parent(Kid, Parent : object)

Spec-Parts(Parent) <-
[objs I (objs : object) objs in Spec-Parts(Parent) &

name(objs) -= Name(Kid)] %Remove from application

"Finds all of the subclasses of of an attribute and if more than one exists,
asks the user which one he wants. Class-Subclasses returns the current class"

#11
function Find-SubNode (attrib : re: :binding) : re: :binding =

% first, get the right object class (it may have subclasses)

let (subnodes : seq(re::binding) -
set-to-seq(Class-Subclasses(attrib, false) less attrib))

% remove the current class (attrib) from the list of all subclasses
let (Object-wanted : re: :binding - re: :*undefined*)

% the type of object to create

(if SubNodes - nil then
% if it doesn't have any subtypes, the set is nil

Object-wanted <- attrib

elseif size(subnodes) > 1 then

% it has subobject types, find out which one to use

let (response : integer -
Nake-Object-Nenu(subnodes, "Enter which type of object you want to build"))

Object-wanted <- subnodes(response)

else % there's only one subtype of object, this probably shouldn't happen
Object-wanted <- subnodes(1)
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(let (subsubnodes set(re: :binding) - Class-Subclasses(object-wanted, false))
if subsubnodes "= nil and-then size(subsubnodes) > 1 then

X The object selected has subnodes, find the object class at this level
object-wanted <- find-subnode(object-wanted)

object-vanted

"Given an attribute that represents an object, creates an object of that type and
gets all of the attribute data

II,

function Make-New-Object( attrib re: :binding) : object =

let (temp-obj : object = make-object(name(Find-Subnode(attrib))))

Temp-Obj <- Modify-Object(temp-obj);
Temp-obj

" Reads in a group of items of the given type and puts then into a set. Since a set
may already exist, it first asks if the user wants to change the original set"

function Read-Set(attr : re::binding, current-set : set(any-type)) : set(any-type) -

let (change : boolean - Read-Yes-Or-No('Do you want to change the current set?"))
if -change then

current-set % return the current value
else

let (temp-set set(any-type) {
of-type symbol - Tell-Set-Seq-Type(attr))

format(t, "creating a set of type -s -%", of-type);
(while Read-Yes-Or-No( "Add another element? " ) do

if of-type - 'integer then
temp-set <- temp-set with Read-Integer("(an integer)")

elseif of-type - 'real then
temp-set <- temp-set with Read-Real("(a real number)")

elseif of-type - 'string then
temp-set <- temp-set with Read-String("(a string)")

elseif of-type - 'symbol then
temp-set <- temp-set with Read-Symbol("(a symbol)")

elseif of-type - 'boolean then
temp-set <- temp-set with Read-Boolean("(a boolean)")

elseif of-type - 'any-type then
temp-set <- temp-set with Read-Any-Type("(any-type)")

else % must be an obj
temp-set <- temp-set with Make-New-Object(Tell-Set-Seq-Binding(attr))

% end while
temp-set
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" Reads in a group of items of the given type and puts then into a sequence. Since a
sequence may already exist, it first asks if the user wants to change the original
sequence"

function Read-Seq(attr : re: :binding, current-seq : seq(any-type)) : seq(any-type) -

let (change : boolean - Read-Yes-Or-No( "Do you want to change the current sequence?"))
if -change then

current-seq % return the current value
else

let (temp-seq seq(any-type) = [0,
of-type synbol - Tell-Set-Seq-Type(attr))

format(t, "creating a seq of type -a "%", of-type);
(while Read-Yes-Or-No("Add another element? ") do

if of-type = 'integer then
temp-seq <- append(temp-seq, Read-Integer("(an integer)"))

elseif of-type - 'real then
temp-seq <- append(temp-seq, Read-Real("(a real)"))

elseif of-type - 'string then
temp-seq <- append(temp-seq, Read-String("(a string)"))

elseif of-type = 'symbol then
temp-seq <- append(tenp-seq, Read-Symbol("(a symbol)"))

elseif of-type = 'boolean then
temp-seq <- append(temp-seq, Read-Boolean("(a boolean)"))

elseif of-type = 'any-type then
tenp-seq <- append(teup-seq, Read-Any-Type("(any-type)"))

else % nust be an object

tenp-seq <- append(temp-seq, Hake-New-Object (Tell-Set-Seq-Binding(attr)))

); %end while
temp-seq

%%%% Functions for adding new objects:

"The new object type nust be a subclass of ONL-Obj."

function Is-Valid-New-Type (Obj-Type : synbol) =
Find-Object-Class (Obj-Type) in
Class-Subclasses (Find-Object-Clase( 'OML-Obj), true)

" Asks for the name of the application for which the new object is to be a part, if
the application exists, it then asks for a new object nane. It checks that the
object name does not exist. It then asks for the type of object to be built, if it
is a valid type, it builds a new object, gets the data, and assigns it to the
application."

function Add-Object (X : object) =
let (Applic-Nane : symbol - Read-Synbol-Default("Enter the applicatior nane", nane(x)))
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if defined?(find-object( 'ONL-Obj, applic-name)) then
let (obj-type : symbol - Read-Symbol("What type of object do you want to create?"))

if Is-Valid-New-Type (Obj-Type) then
let (Obj-Name : symbol - Read-Symbol("What is the object's name?"))

if undefined?(find-object('OML-Obj, Obj-Name)) then
let (New-Obj : object - Modify-Object(make-object(Obj-Type)))

Changes-Made <- true;
Set-Attrs(New-Obj, 'name, Obj-Iame) U;

% Set-To-Parent(lew-Obj, find-object ('ONL-Obj, Applic-name))

else
format (t, "An object named -s already exists-", Obj-Iame)

else
format(t, "-s is not a valid object type-%", obj-type)

else
format(t, "Application -s does not exist in the object base.-%", applic-name)

%%XX Function for erasing objects:

%X---------------------------------------------------------------------
"Asks for the object to be deleted, checks that the object exists in the object base,
then asks if the user is sure he wants to erase that object, if he answers yes, the
object is removed from the application definition, and erased"

function Delete-Object (A : object) -

let (Obj-Iame : symbol - Read-Symbol("What object's do you want to delete?"))
let (Obj : object - Find-Object('OML-Obj, Obj-Name))

if defined?(Obj) then
(if Read-Yes-Or-Io(concat ("Are you sure you want to detete ",

Symbol-To-String(Obj-Name), " " )) then
Changes-Made <- true;

% Remove-From-Parent(Obj, Parent-Expr(Obj));
erase-Object (Obj)

)
else

format(t, "1s is not in the object base-%", Obj-Iame)
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Appendix D. Home Heater Problem

D.1 Heater Problem Analysis

The Home Heating System problem comes from the problem set for the Fourth International

Workshop on Software Specification and Design, and is based on a problem by S. White presented

to 1984 Embedded Computer System Requirement Workshop.

D.2 Problem Statement

"The controller of an oil hot water home heating system regulates in-flow of heat, by turning

the furnace on and off, and monitors the status of combustion and fuel flow of the furnace system,

provided the master switch is set to "heat" position. The controller activates the furnace whenever

the home temperature, t, falls below t, - 2 degrees, where tr is the desired temperature set by the

user. The activation procedure is as follows:

1. the controller signals the motor to be activated;

2. the controller monitors the motor speed and once the speed is adequate it signals the ignition

and oil valve to be activated.

3. the controller monitors the water temperature and once the temperature is reached a pre-

defined value it signals the circulation valve to be opened. The heated water then starts to

circulate through the house.

4. a fuel flow indicator and an optical combustion sensor signal the controller if abnormalities

occur. In this case the controller signals the system to be shut off.

5. once the home temperature reaches t. + 2 degrees, the controller deactivates the furnace by

first closing the oil valve and then, after 5 seconds, stopping the motor.

In addition the system is subject to the following constraints:

1. minimum time for furnace restart after prior operation is 5 minutes.
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2. furnace turn-off shall be indicated within 5 seconds of master switch shut off or fuel flow shut

off. (18)"

D.3 Entity Relationship Model

The ERM in Figure 23 shows the entities required to specify the home heater. The controller

Fuel Flow ombnsti Five M vSC
Sensor Timer Timer

Status Sensor Timer (ýatus

-t- +

Master Monitors ControllerMor
Switch

Status Sau Spe

It osi t Io

w.,., Throsa " 1 V.,o"lvo •.w"

water Air ate

Figure 23. Home Heating System: Entity Relationship Model

has two attributes, t7, the desired air temperature, and tt, the water temperature that must be

reached before water from the boiler will circulate throughout the heater system. The controller

monitors certain entities and changes the settings on others. Note that the master switch, the

thermostats, and the sensors are external entities, and that their values cannot be changed by the

controller. The meaning of the status attribute depends on the entity that it is associated with.
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The status of a sensor is either safe or unsafe. The status of the master switch is either "off" or

"heat", and valve's status is either "open" or "closed". The status of both the timer and motor is

either "off" or "on".

D.4 State Transition Model

This problem easily fits a classical state transition model. The problem statement gives an

activation procedure that shows conditions that must be met before the system advances to the

next state. Figure 24 depicts the activation and shutdown procedures developed from the problem

statement by Blankenship (6:Appendix C). The diagram has been modified to redirect events
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Figure 24. Home Heating System: State Transition Model

246



dealing with error conditions. The system waits in each state for changes in the environment that

trigger transitions to the next state.

Nine states were chosen to model this problem:

off: heating system is not on

idle: heating system is on, but it is not heating

motor-on: (step one of the activation process) water pump (motor) activated

water-heating: (step two of the activation process) water pump speed is adequate, fuel

ignited, oil valve open

running: (final step of the activation process) activation complete, house being heated

shutdown: house temperature is sufficient, shut down the system

wait-5-min: constraint one: minimum cycle time

abnormal-shutdown: an error event has occurred and the system is beginning to shut

down

hold: a state where the system waits for error correction or for the system to be turned off

The operation of the home heating system can be described by the nine states listed above.

Initially, the controller is in the OFF state. When the master switch is placed in the "on" position

(Event El), the controller transitions to the IDLE state (Event 1). There are two possible transitions

out of the IDLE state:

1. Should the master switch be returned to the "off" position (Event E8), the controller will

transition to the OFF state (Event 8).

2. Should the air temperature drop to two degrees below the desired temperature (Event E2),

the controller will transition to the MOTOR-ON state (Event 2).

In the MOTOR-ON state, the water circulation pump is activated. The system will remain in

this state until the pump's speed is adequate (Event E3), then the controller will signal the ignition,
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open the oil valve, and transition to the WATER-HEATING state (Event 3). Should the master switch

be placed in the "off" position (Event E8) while the controller is in the MOTOR-ON state, the pump

will be deactivated and the controller will transition to the OFF state (Event 8).

In the WATER-HEATING state, the controller waits for one of four events:

1. When the water temperature reaches the preset temperature (Event E4), the controller will

open the water valve, and transition into the RUNNING state (Event 4).

2. If the master switch is returned to the "off" position (Event E8), the controller will close

the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 8).

3. Should the fuel flow sensor detect an abnormal condition (Event E9), the controller will

close the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 9).

4. Should the combustion sensor detect an abnormal condition (Event E10), the controller will

close the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 10).

In the RUNNING state, the controller waits for one of four events:

1. When the air temperature is two degrees greater than the desired temperature, (Event E5),

the controller will close the oil valve, start the five second timer, and transition into the

SHUTDOWN state (Event 5).

2. If the master switch is returned to the "off" position (Event E8), the controller will transition

to the ABNORMAL SHUTDOWN state (Event 8).

3. Should the fuel flow sensor detect an abnormal condition (Event E9), the controller will

close the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 9).
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4. Should the combustion sensor detect an abnormal condition (Event El0), the controller will

close the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 10).

The ABNORMAL SHUTDOWN state waits for the five second timer to expire (Event E6), and

then shuts the water pump motor off, closes the water valve, turns the ignition off, and transitions

to the HOLD state (Event 6).

The SHUTDOWN state waits for the five second timer to expire (Event E6), and then shuts

the water pump motor off, closes the water valve, and turns the ignition off. The controller starts

the five minute timer and transitions to the WAIT-5-MINUTES state (Event 6).

The WAIT-5-MINUTES state keeps the heater system from entering another heating cycle for

five minutes. When the timer expires (Event E7), the controller transitions into the IDLE state

(Event 7).

The HOLD state is entered when the heater system has been shut down because of an unsafe

sensor reading or because the master switch was turned off during the heating cycle. The controller

will remain in this state until the system is reset (Event Ell) when it will transition into the IDLE

state (Event 11). If the master switch is turned off (Event E12), the controller will transition into

the OFF state (Event 12). The HOLD state was included to prevent the controller from transitioning

through the first three activation states before sensing an unsafe condition that may not have been

corrected.
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D.5 Heater Problem OML Specification

%%%%Y%......YY%%,%...Y%...%Y%%%lYYYYYY%....YYY%=%.Y%.%Y YYY%..%%

%%% File-Name : h.spec (Home-Heater Specification) %%Y.

%%% Authors : Capt Mary Boom, Capt Brad Mallare %%%

%%% Purpose OML specification for the home heater problem. %%%

%%V. Unified Abstract Model Components %%V
%/% Entities, Relationships, States, Events, Behaviors, and .Y.
%/. Relation-Tables %Y%

%Y/% Operation : After loading the translation code (trans-oml.fasl4) and %%%
%',%. all the other code that it is dependent on, this OML specification X%%
%%% can be translated into an executable specification by typing the %..
%%% following command at the Refine prompt: %%%

%%% (convert "<your-OKL-file-name>") %%%

%%% The name of the generated executable specification will be displayed %%%
%%% on the screen. Additionally, the executable specification will be %%%
%%% automatically compiled and loaded. %%%

%%% After this file is translated, compiled, and loaded into Refine, %%%
%%% it can be executed by typing the following command at the Refine %%%
%%% prompt: %%%
%%% (Sim) %%%
%%% Y.Y.

specification home-heater

%%%%% ENTITIES

SENSOR class-of entity
type : external

parts
status : symbol range {safe, unsafe}

FUEL-SENSOR instance-of SENSOR
values
status : safe

COMBUSTION-SENSOR instance-of SENSOR
values
status : safe

VALVE class-of entity
type : external

parts
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status : symbol range {open, closed}

WATER-VALVE instance-of VALVE
values
status : closed

OIL-VALVE instance-of VALVE
values
status : closed

TIMER class-of entity
type : external

parts
status : symbol range {off, on}

FIVE-KIN-TIMER instance-of TIMER
values
status : off

FIVE-SEC-TIMER instance-of TIMER
values
status : off

THERMOSTAT class-of entity
type : external

parts
temp : integer range {0 .. 280}

AIR instance-of THERMOSTAT
values
temp : 60

WATER instance-of THERMOSTAT
values
temp : 60

MASTER-SWITCH instance-of entity
type : external

parts
status : symbol range {on, off} init-val off

MOTOR instance-of entity
type : external

parts
status symbol range {on, off} init-val off;
speed symbol range {adequate, inadequate} init-val inadequate

IGNITION instance-of entity
type : external

parts
status : symbol range {on, off} init-val off
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CONTROLLER instance-of entity
type : internal

parts
tr integer range {32 130} init-val 70; 7.1 preset air temp
t :integer range {32 280} init-val 180 . preset water temp

%%%%% RELATIONSHIPS %%%%/.%

ACTIVATES instance-of relationship
type : general
cardinality : 1-i

MONITORS instance-of relationship
type : general
cardinality : 1-1

POSITIONS instance-of relationship
type : general
cardinality : 1-1

SETS instance-of relationship
type : general
cardinality : I-I

%%XXX STATES %Y.%%%%
U The first state in an OML spec is assumed to be the initial state

OFF instance-of state
state-space : master-switch.status = off

IDLE instance-of state
state-space : master-switch.status = on;

five-min-timer.status = off;
five-sec-timer.status = off

MOTOR-ON instance-of state
state-space : master-switch.status = on;

motor.status = on;
motor.speed = inadequate;
air.temp < controller.tr - 2;
ignition.status = off;
oil-valve.status = closed

WATER-HEATING instance-of state
state-space : master-switch.status = on;

air.temp < controller.tr + 2;
motor.status = on;
motor.speed = adequate;
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water.temp < controller.tv;
fuel-sensor.status = safe;
combustion-sensor.status = safe;
water-valve.status = closed;
oil-valve.status = open

RUINING instance-of state
state-space :master-suitch.status = on;

air.temp < controller.tr + 2;
motor.status =on;

motor.speed =adequate;
water.temp >= controller.tw;
fuel-sensor.status = safe;
coznbustion-sensor.status = safe;
water-valve.status = open;
oil-valve.status = open

SHUTDOWN instance-of state
state-space :master-svitch.status = on;

air.temp >= controller.tr + 2;
inotor.status = on;
fuel-sensor.status = safe;
combustion-sensor.status = safe;
water-valve.status = open;
oil-valve.status = closed;
five-sec-timer.status = an

ABNORMAL-SHUTDOWN instance-of state
state-space :motor.status =off;

motor.speed =inadequate;

%. water-valve.status = open; % execution showed we didn't need
oil-valve.status = closed;
five-sec-timer.status =on

WAIT5MNIUTES instance-of state
state-space :master-switch.status =on;

motor.status = off;
fuel-sensor.status = safe;
combustion-sensor.status = safe;
water-valve.status = closed;
oil-valve.status =closed;
ignition.status =off;

five-sec-timer.status =off;
five-mmn-timer, status =on

HOLD instance-of state
state-space :five-sec-timer.status = off;

five-min-timer.status = off;
motor.status = off;
water-valve.status = closed;
oil-valve.status =closed;
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ignition.status = off

%Y7.7.7.7 EVENTS %.%.7.7

%% Internal Events

MASTER-SWITCH-ON instance-of event
type: internal

MOTOR-TURNED-ON instance-of event
type: internal

OIL-IGNITED instance-of event
type: internal

WATER-VALVE-OPENED instance-of event
type: internal

DONE-HEATING-WATER instance-of event
type: internal

MOTOR-TURNED-OFF instance-of event
type: internal

DONE-WAITING instance-of event
type: internal

MASTER-SWITCH-OFF instance-of event
type: internal

ABNORMAL-FUEL instance-of event
type: internal

ABNORMAL-COMBUSTION instance-of event
type: internal

SYSTEM-IS-RESET instance-of event
type: internal

SYSTEM-IS-OFF instance-of event
type: internal

%.% External Events

SWITCH-TURNED-ON instance-of event
type: external

AIR-TEMP-BELOW-PRESET instance-of event
type: external
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ADEQUATE-MOTOR-SPEED instance-of event
type: external

WATER-TEMP-ABOVE-PRESET instance-of event
type: external

AIR-TEMP-ABOVE-PRESET instance-of event
type: external

FIVE-SEC-TIMER-EXPIRES instance-of event
type: external

FIVE-MIN-TIMER-EXPIRES instance-of event
type: external

SWITCH-TURNED-OFF instance-of event
type: external

UNSAFE-COMBUSTION-SENSOR instance-of event
type: external

UNSAFE-FUEL-SENSOR instance-of event
type: external

RESET-SYSTEM instance-of event
type: external

SYSTEM-TURNED-OFF instance-of event
type: external

777777 BEHAVIORS - STATE ACTIVITES %,%,77,

FURNACE-OFF instance-of behavior
master-switch.status, = on

event, MASTER-SWITCH-ON

FURNACE-IDLE instance-of behavior

air.temp, < controller.tr- 2, dont-care;
master-switch.status, = on, = off

motor.status, on, off
event, MOTOR-TURNED-ON, MASTER-SWITCH-OFF
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FURNACE-MOTOR-alf instance-of behavior

motor.speed, dont-care, = adequate;
master-switch.status, =off, = on

ignition.status, off, on;
oil-valve.status, closed, open;
motor.status, off, on
event, MASTER-SWITCH-OFF, OIL-IGNITED

FURNACE-WATER-HEATING instance-of behavior

Water.temp, > controller.tv,
dont-care, dont-care, dont-care;

master-switch.status, = on, = off, dont-care, dont-care;
fuel-sensor.status, = safe, dont-care, = unsafe, dont-care;
combustion-sensor.status, =safe, dont-care, dont-care, =unsafe

water-valve.status, open, closed, closed, closed;
oil-valve.status, open, closed, closed, closed;
five-sec-timer.status, off, on, on, on;
motor.status, on, off, off, off;
motor. speed, adequate, inadequate, inadequate, inadequate
event, WATER-VALVE-OPENED, MASTER-SWITCH-OFF, ABNORMAL-FUEL,

ABNORMAL-COMBUSTION

FURNACE-RUNNING instance-of behavior

air.temp, >= controller.tr + 2,
dont-care, dont-care, dont-care;

fuel-sensor.status, = safe, = unsafe, dont-care, dont-care;
combustion-sensor.status, = safe, dont-eare, = unsafe, dont-care;
master-switch.status, =on, =on, =on, =off

oil-valve.status, closed, closed, closed, closed;
five-sec-timer.status, on, on, on, on;
motor.status, On, off, off, off;
motor. speed, adequate, inadequate, inadequate, inadequate
event, DONE-HEATING-WATER, ABNORMAL-FUEL, ABNORMAL-COMBUSTION,

MASTER-SWITCH-OFF

FURNACE-SHUTTING-DOWN instance-of behavior

five-sec-timer.status, = off;
fuel-sensor.status, = safe;
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combustion-sensor.status, =safe

motor. status) off;
motor. speed, inadequate;
vater-valve. status, closed;
five-mmn-tinierstatus, on;
ignition, status, off;
water.temp, controller.tv - 2
event, MOTOR-TURNED-OFF

ABIORMAL-FURNACE-SHUTTIIG-DOWN instance-of behavior

five-sec-timer.status, =off

motor. status, off;
motor, speed, inadequate;
vater-valve status, closed;
five-mmn-timer, status, off;
ignition. status, off;
water.temp, controller.tw - 2
event, MOTOR-TURNED-OFF

FURNACE-WAITING instance-of behavior

five-min-timer.status, =off

event, DONE-WAITING

FURNACE-ABNORMAL instance-of behavior

fuel-sensor.status, = safe, = safe;
combustion-sensor.status, = safe, = safe;
master-switch.status, = off, = on

event, SYSTEM-IS-OFF, SYSTEM-IS-RESET

'/'//,%',',',',BEHAVIORS - EVENT ACTIONS %'.','/,/,%V,%%

SWITCH-TURNED-01-BEH instance-of behavior
true

master-switch.status :=on
event none
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AIR-TEMP-BELOW-PRESET-BEE instance-of behavior
true

air.temp := controller.tr - 3
event none

ADEQUATE-MOTOR-SPEED-BEH instance-of behavior
true

motor.speed := adequate
event none

WATER-TEMP-ABOVE-PRESET-BEH instance-of behavior
true

water.temp := controller.tw + I
event none

AIR-TEMP-ABOVE-PRESET-BEH instance-of behavior
true

air.temp := controller.tr + 3
event none

FIVE-SEC-TIMER-EXPIRES-BEH instance-of behavior
true

five-sec-timer.status := off
event none

FIVE-MIN-TIMER-EXPIRES-BEH instance-of behavior
true

five-min-timer.status := off
event none

SWITCH-TURNED-OFF-BEH instance-of behavior
true

master-switch.status := off
event none

UNSAFE-COMBUSTION-SENSOR-BEH instance-of behavior

true

combustion-sensor.status := unsafe

event none

UNSAFE-FUEL-SENSOR-BEH instance-of behavior
true

258



fuel-sensor.status := unsafe
event none

RESET-SYSTEM-BEH instance-of behavior
true

fuel-sensor.status := safe &
combustion-sensor.status := safe &
master-switch.status := on
event none

SYSTEM-TURNED-OFF-BEH instance-of behavior
true

fuel-sensor.status := safe &
combustion-sensor.status := safe £
master-switch.status := off
event none

'Y/,',%% Relation Table

TABLE1 instance-of relation-table

UFROM-OBJECT ASSOCIATION TO-OBJECT

',/, STATE- INTERNAL-EVENT RELATIONSHIPS

OFF, MASTER-SWITCH-ON, IDLE;
IDLE, MOTOR-TURNED-ON, MOTOR-ON;
MOTOR-ON, OIL-IGNITED, WATER-HEATING;
WATER-HEATING, WATER-VALVE-OPENED, RUNNING;
RUNNING, DONE-HEATING-WATER, SHUTDOWN;
SHUTDOWN, MOTOR-TURNED-OFF, WAITSMINUTES;
ABNORMAL-SHUTDOWN, MOTOR-TURNED-OFF, HOLD;
WAITSMINUTES, DONE-WAITING, IDLE;
IDLE, MASTER-SWITCH-OFF, OFF;
MOTOR-ON, MASTER-SWITCH-OFF, OFF;
WATER-HEATING, MASTER-SWITCH-OFF, ABNORMAL-SHUTDOWN;
WATER-HEATING, ABNORMAL-FUEL, ABNORMAL-SHUTDOWN;
WATER-HEATING, ABNORMAL-COMBUSTION, ABNORMAL-SHUTDOWN;
RUNNING, MASTER-SWITCH-OFF, ABNORMAL-SHUTDOWN;
RUNNING, ABNORMAL-FUEL, ABNORMAL-SHUTDOWN;
RUNNING, ABNORMAL-COMBUSTION, ABNORMAL-SHUTDOWN;
HOLD, SYSTEM-IS-RESET, IDLE;
HOLD, SYSTEM-IS-OFF, OFF;

U STATE- EXTERNAL-EVENT RELATIONSHIPS

OUTSIDE, SWITCH-TURNED-ON, OFF;
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OUTSIDE, AIR-TEMP-BELOW-PRESET, IDLE;
OUTSIDE, ADEQUATE-MOTOR-SPEED, MOTOR-ON;
OUTSIDE, WATER-TEMP-ABOVE-PRESET, WATER-HEATIIG;
OUTSIDE, AIR-TEMP-ABOVE-PRESET, RUNNING;
OUTSIDE, FIVE-SEC-TIMER-EXPIRES, SHUTDOWN;
OUTSIDE, FIVE-SEC-TIMER-EXPIRES, ABNORMAL-SHUTDOWN;
OUTSIDE, FIVE-MIN-TIMER-EXPIRES, WAITSMINUTES;
OUTSIDE, SWITCH-TURNED-OFF, IDLE;
OUTSIDE, SWITCH-TURNED-OFF, MOTOR-ON;
OUTSIDE, SWITCH-TURNED-OFF, WATER-HEATING;
OUTSIDE, SWITCH-TURNED-OFF, RUNNING;
OUTSIDE, UNSAFE-COMBUSTION-SENSOR, WATER-HEATING;
OUTSIDE, UNSAFE-COMBUSTION-SENSOR, RUNNING;
OUTSIDE, UNSAFE-FUEL-SENSOR, WATER-HEATING;
OUTSIDE, UNSAFE-FUEL-SENSOR, RUNNING;
OUTSIDE, RESET-SYSTEM, HOLD;
OUTSIDE, SYSTEM-TURNED-OFF, HOLD;

%Y.Event-Behavior-relationships

SWITCH-TURNED-ON, ICO, SWITCH-TURNED-ON-BEH;
AIR-TEMP-BELOW-PRESET, ICO, AIR-TEMP-BELOW-PRESET-BEH;
ADEC'UATE-MOTOR-SPEED, ICO, ADEQUATE-MOTOR-SPEED-BEH;
WATER-TEMP-ABOVE-PRESET, ICO, WATER-TEMP-ABOVE-PRESET-BEH;
AIR-TEMP-ABOVE-PRESET, ICO, AIR-TEMP-ABOVE-PRESET-BEH;

FIVE-SEC-TIMER-EXPIRES, ICO, FIVE-SEC-TIMER-EXPIRES-BEN;
FIVE-MIN-TIMER-EXPIRES, ICO, FIVE-MIN-TIMER-EXPIRES-BEB;
SWITCH-TURNED-OFF, ICO, SWITCH-TURIED-OFF-BEH;
UNSAFE-COMBUSTION-SENSOR, !CO, UNSAFE-COMBUSTION-SENSOR-BEH;
UNSAFE-FUEL-SENSOR, ICO, UNSAFE-FUEL-SENSOR-BEN;
RESET-SYSTEM, ICO, RESET-SYSTEM-BEH;
SYSTEM-TURNED-OFF, ICO, SYSTEM-TURNED-OFF-BEH;

%% ENTITY-RELATIONSHIPS

CONTROLLER, ACTIVATES, MOTOR;
CONTROLLER, MONITORS, MOTOR;
CONTROLLER, MONITORS, THERMOSTAT;
CONTROLLER, POSITIONS, VALVE;
CONTROLLER, MONITORS, MASTER-SWITCH;
CONTROLLER, MONITORS, SENSOR;
CONTROLLER, SETS, TIMER;

%% STATE-BEHAVIOR RELATIONS4IPS

OFF, ICO, FURNACE-OFF
IDLE, ICO, FURNACE-IDLE;
MOTOR-ON, ICO, FURNACE-MOTOR-ON;
WATER-HEATING, ICO, FURNACE-WATER-HEATING;
RUNNING, ICO, FURNACE-RUNNING;
SHUTDOWN, ICO, FURNACE-SHUTIIING-DOWN;
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ABNORMAL-SHUTDOWN, ICO ABIORMAL-FURNACE-SHUTTI IG-DO WN;
WAIT5HINUTES, lCD, FURNACE-WAITING;
HOLD, lCD, FURNACE-ABNORMiki.
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D.6 Heater Problem REFINE Executable Specification

! in-package ('RU)
! in-grammar ('user)

var OML-Obj : object-class subtype-of user-object

var HOME-HEATER : object-class subtype-of OML-Obj

type return-values = tuple(validity: symbol,
events: seq(symbol),
behaviors : seq(symbol),
st-behaviors : seq(symbol))

%%% Define object classes

var THERMOSTAT : object-class subtype-of HOME-HEATER
var THERMOSTAT-TEMP: map(THERMOSTAT, integer) = {II}

var TIMER : object-class subtype-of HOME-HEATER
var TIMER-STATUS: map(TIMER, symbol) = {I (}

var VALVE : object-class subtype-of HOME-HEATER
var VALVE-STATUS: map(VALVE, symbol) = {II}

var SENSOR : object-class subtype-of HOME-HEATER
var SENSOR-STATUS: map(SENSOR, symbol) = {I II

%.%% Define instances of object classes

var CONTROLLER-ENTITY : object-class subtype-of HOME-HEATER
var CONTROLLER-ENTITY-TR: map (CONTROLLER-ENTITY, integer) = {I I}
var CONTROLLER-ENTITY-TW: map(CONTROLLER-ENTITY. integer) - {I I}

var CONTROLLER : CONTROLLER-ENTITY =
set-attrs (make-object ( 'CONTROLLER-ENTITY),

'name, '*CONTROLLER,
'CONTROLLER-ENTITY-TR, 70,
'CONTROLLER-ENTITY-TW, 180)

var IGNITION-ENTITY : object-class subtype-of HOME-HEATER
var IGNITION-ENTITY-STATUS: map(IGNITION-ENTITY, symbol) = { I }

var IGNITION : IGNITION-ENTITY -
set-attrs (make-object ('IGNITION-ENTITY),

'name, '*IGNITION,
'IGNITION-ENTITY-STATUS, 'OFF)

var MOTOR-ENTITY : object-class subtype-of HOME-HEATER
var MOTOR-ENTITY-STATUS: map (MOTOR-ENTITY, symbol) = {I }
var MOTOR-ENTITY-SPEED: map(MOTOR-ENTITY, symbol) - {I }

var MOTOR : MOTOR-ENTITY =
set-attrs (make-object ('MOTOR-ENTITY),

'name, '*MOTOR,
'MOTOR-ENTITY-STATUS, 'OFF,
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'MOTOR-ENTITY-SPEED, 'INADEQUATE)

var MASTER-SWITCH-ENTITY : object-class subtype-of HOME-HEATER
var MASTER-SWITCH-ENTITY-STATUS: map (MASTER-SWITCH-ENTITY, symbol) (II

var MASTER-SWITCH : MASTER-SWITCH-ENTITY =

set-attrs (make-object ('MASTER-SWITCH-ENTITY),
'name, '*MASTER-SWITCH,
'MASTER-SWITCH-ENTITY-STATUS, 'OFF)

var WATER : THERMOSTAT =

set-attrs(make-object( 'THERMOSTAT),
'name, '*WATER,
'THERMOSTAT-TEMP, 60)

var AIR : THERMOSTAT =

set-attrs(make-object( 'THERMOSTAT).

'name, '*AIR,
'THERMOSTAT-TEMP. 60)

var FIVE-SEC-TIMER : TIMER -
set-attrs(make-object( 'TIMER),

'name, '*FI YE-SEC-TIMER,
'TIMER-STATUS, 'OFF)

var FIVE-MIN-TIMER : TIMER =
set-attrs (make-object ('TIMER),

'name, '*FIVE-MIN-TIMER,
'TIMER-STATUS, 'OFF)

var OIL-VALVE : VALVE -
set-at trs (make-object ('VALVE),

'name, '*OIL-VALVE,
'VALVE-STATUS, 'CLOSED)

var WATER-VALVE : VALVE =

set-attrs(make-object( 'VALVE),
'name, '*WATER- VALVE,
'VALVE-STATUS, 'CLOSED)

var COMBUSTION-SENSOR : SENSOR-
set-attrs(make-object( 'SENSOR),

'name, '*COMBUSTION-SENSOR,
'SENSOR-STATUS, 'SAFE)

var FUEL-SENSOR : SENSOR -
set-attrs(uake-object( 'SENSOR),

'name, '*FUEL-SENSOR,
'SENSOR-STATUS, 'SAFE)

%%% Define Store Objects

%%% Define objects for each flow object

%%% Define functions for behavior objects
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function SYSTEM-TURNED-OFF-BEHO
let (return-symbol :symbol - undefined)

C(if true
then

(SENSOR-STATUJS(FUEL-SENSOR) <- 'SAFE);
(SENSOR-STATUJS(CONBUSTION-SENSOR) <- 'SAFE);

(RASTER-SWITCH-ENTITY-STATUS (RASTER-SWITCH) <- )OFF)

return-symbol

function RESET-SYSTEN-BEH()
let (return-symbol :symbol =undefined)

C(if true
then

(SENSOR-STATUS (FUEL-SENSOR) <- 'SAFE);,
CSENSOR-STATUS(COMBUSTION--SENSOR) <- 'SAFE);

(RASTER-SWITCH-ENTITY-STATUS (RASTER-SWITCH) <- 'ON)

return-symbol

function UNSAFE-FUEL-SENSOR-BEH()
let (return-symbol :symbol - undefined)

C(if true
then

(SENSOR-STATUS (FUEL-SENSOR) <- 'UNSAFE)

return-symbol

function UNSAFE-COMBUSTION-SENSOR-BEHOC
let (return-symbol :symbol = undefined)

((if true
then

(SENSOR-STATUS (COMBUSTION-SENSOR) <- 'UNSAFE)

return-symbol

function SWITCH-TURNED-OFF-BEH()
let (return-symbol :symbol = undefined)

((if true
then

(RASTER-SWITCH-ENTITY-STATUS (RASTER-SWITCH) <- 'OFF)

return-symbol

function FIVE-RIN-TINER-EIPIRES-BEH()
let (return-symbol :symbol - undefined)

((if true
then

(TIRER-STATUS(FIVE-MIN-TIRER) <- 'OFF)
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return-symbol

function FIVE-SEC-TIMER-EXPIRES-BEH() =

let(return-symbol : symbol - undefined)

( (if true
then

(TIMER-STATUS(FIVE-SEC-TIMER) <- 'OFF)

return-symbol

function AIR-TEMP-ABOVE-PRESET-BEHO =

let(return-symbol : symbol = undefined)

( (if true
then

(THERMOSTAT-TEMP (AIR) <- (CONTROLLER-ENTITY-TR(CONTROLLER) + 3))

return-symbol

function WATER-TEMP-ABOVE-PRESET-BEHO =

let(return-symbol : symbol = undefined)

C (if true

then
(THERMOSTAT-TEMP (WATER) <- (CONTROLLER-ENTITY-TW(CONTROLLER) + M))

return-symbol

function ADEQUATE-MOTOR-SPEED-BEHO =

let(return-symbol : symbol = undefined)

( (if true
then

(MOTOR-ENTITY-SPEED (MOTOR) <- 'ADEQUATE)

return-symbol

function AIR-TEMP-BELOW-PRESET-BEHO =

let(return-symbol : symbol = undefined)

( (if true
then

(THERMOSTAT-TEMP (AIR) <- (CONTROLLER-ENTITY-TR(CONTROLLER) - 3))

return-symbol

function SWITCH-TURNED-ON-BEHO =
let(return-symbol : symbol = undefined)

( (if true
then

(MASTER-SWITCH-ENTITY-STATUS(MASTER-SWITCH) <- 'ON)

return-symbol
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function FURNACE-ABNORMALO : symbol
let (return-symbol :symbol - undefined)

(SENSOR-STATUS (FUEL-SENSOR) - 'SAFE)
& (SENSOR-STATUS (COMBUSTION-SENSOR) - 'SAFE)
ft (MASTER-SWITCH-ENTITY-STATUS CHASTER-SWITCH) -'OFF)

(return-symbol <- 'OFF);

(SENSOR-STATUS (FUEL-SENSOR) ='SAFE)

kt (SENSOR-STATUS(COMBUSTION-SENSOR) - 'SAFE)
&t CHASTER-SWITCH-ENTITY-STATUS CHASTER-SWITCH) ='ON)

(return-symbol <- 'IDLE)

return-symbol

function FURNACE-WAITING(): symbol
let (return-symbol :symbol = undefined)

(TIMER-STATUS (FIVE-MIN-TIMER) - 'OFF)

(return-symbol 

<- 'IDLE)

return-symbol

function ABNORMAL-FUR1IACE-SHUTTING-DOWNC) symbol
let (return-symbol :symbol - undefined)

CTIMER-STATUS (FIVE-SEC-TIMER) -'OFF)

(MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)

ft CMOTOR-ENTITY-SPEED (MOTOR) <- 'INADEQUATE)
&t (VALVE-STATUS (WATER-VALVE) <- 'CLOSED)
It (TIMER-STATUS (Fl VE-MIN-TIMER) <- 'OFF)
&t CIGNITION-ENTITY-STATUS (IGNITION) <- 'OFF)
ft (THERMOSTAT-TEMP (WATER) <- CCONTROLLER-ENTITY-TW(CONTROLLER) -2))
&t (return-symbol <- 'HOLD)

return-symbol
%%%%%%%%%%%%x

function FURNACE-SHUTTING-DOWN(): symbol
let (return-symbol :symbol - undefined)

CTIMER-STATUSCFIVE-SEC-TIMER) - 'OFF)
ft(SENSOR-STATUS (FUEL-SENSOR) - 'SAFE)
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&(SENSOR-STATUS(COMBUSTION-SENSOR) -'SAFE)

(MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
k (MOTOR-ENTITY-SPEED (MOTOR) <- 'INADEQUATE)
ft (VALVE-STATUS (HATER-VALVE) <- 'CLOSED)
&t (TIMER-STATUS (FIVE-MNl-TIMER) <- 'ON)
& (IGNITION-ENTITY-STATUS (IGNITION) <- 'OFF)
kt (THERMOSTAT-TEMP (WATER) <- (CONTROLLER-ENTITY-TW (CONTROLLER) -2))

&t (return-symbol <- 'WAIT5MINUTES)

return-symbol

function FURNACE-RUNNING(): symbol
let (return-symbol :symbol = undefined)

(THERMOSTAT-TEMP (AIR) >= (CONTROLLER-ENTITY-TR (CONTROLLER) + 2))
&t (SENSOR-STATUS (FUEL-SENSOR) - 'SAFE)
kt (SENSOR-STATUS (COMBUSTION-SENSOR) = 'SAFE)
&t (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) ='ON)

(VALVE-STATUS (OIL-VALVE) <- 'CLOSED)
kt (TIMER-STATUS(FIVE-SEC-TIMER) <- 'ON)
kt (MOTOR-ENTITY-STATUS (MOTOR) <- 'ON)
kt (MOTOR-ENTITY-SPEED(MOTOR) <- 'ADEQUATE)
kt (return-symbol <- 'SHUTDOWN);

(SENSOR-STATUS (FUEL-SENSOR) = 'UNSAFE)
ft (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) ='ON)

(VALVE-STATUS (OIL-VALVE) <- 'CLOSED)
ft (TIMER-STATUS (FIVE-SEC-TIMER) <- 'ON)
ft (MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
ft (MOTOR-ENTITY-SPEED(MOTOR) <- 'INADEQUATE)
ft (return-symbol <- 'ABNORMAL-SHUTDOWN);

(SENSOR-STATUS (COMBUSTION-SENSOR) - 'UNSAFE)
ft(MASTER-SWITCH-ENTITY-STATUJS(MASTER-SWITCH) ='ON)

(VALVE-STATUS(OIL-VALVE) <- 'CLOSED)
ft (TIMER-STATUS(FIVE-SEC-TIMER) <- 'ON)
kt (MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
ft (MOTOR-ENTITY-SPEED (MOTOR) <- 'INADEQUATE)
kt (return-symbol <- 'ABNORMAL-SHUTDOWN);

(MASTER-SWITCH-ENTITY-STATUJS(MASTER-S WITCH) ='OFF)

(VALVE-STATUS (OIL-VALVE) <- 'CLOSED)
ft (TIMER-STATUS(FIVE-SEC-TIMER) <- 'ON)
kt (MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
ft (MOTOR-ENTITY-SPEED(MOTOR) <- 'INADEQUATE)
ft (return-symbol <- 'ABNORMAL-SHUTDOWN)
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return-symbol

function FURNACE-WATER-HEATING(): symbol=
let (return-symbol :symbol - undefined)

(THERMOSTAT-TEMP (WATER) > CONTROLLER-EUTITY-TW(CONTHOLLER))
& (MASTER-SWITCH-ENTITY-STATUJS (ASTER-SWITCH) ='ON)

& (SENSOR-STATUS (FUEL-SENSOR) = 'SAFE)
& (SENSOR-STATUS (COMBUSTION-SENSOR) - 'SAFE)

(VALVE-STATUS (WATER-VALVE) <- 'OPEN)
& (VALVE-STATUS(OIL-VALVE) <- 'OPEN)
I (TIMER-STATUS (FIVE-SEC-TIMER) <- 'OFF)
k (MOTOR-ENTITY-STATUS (MOTOR) <- 'ON)
& (MOTOR-ENTITY-SPEED(MOTOR) <- 'ADEQUATE)
&t (return-symbol <- 'RUNNING);

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) ='OFF)

(VALVE-STATUS(WATER-VALVE) <- 'CLOSED)
& (VALVE-STATUS(OIL-VALVE) <- 'CLOSED)
& (TIMER-STATUS (FIVE-SEC-TIMER) <- 'ON)
I (MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
& (MOTOR-ENTITY-SPEED(MOTOR) <- 'INADEQUATE)
&t (return-symbol <- 'ABNORMAL-SHUTDOWN);

(SENSOR-STATUS (FUEL-SEISOR) - 'UNSAFE)

(VALVE-STATUS (WATER-VALVE) <- 'CLOSED)
a (VALVE-STATUJS(OIL-VALVE) <- 'CLOSED)
a (TIMER-STATUS(FIVE-SEC-TIMER) <- 'ON)
a (MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
a (MOTOR-ENTITY-SPEED(MOTOR) <- 'INADEQUATE)
a (return-symbol <- 'ABNORMAL-SHUTDOWN);

(SENSOR-STATUS (COMBUSTION-SENSOR) - 'UNSAFE)

(VALVE-STATUS (WATER-VALVE) <- 'CLOSED)
&t (VALVE-STATUS(OIL-VALVE) <- 'CLOSED)
It (TIMER-STATUS(FIVE-SEC-TIMER) <- 'ON)
&t (MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
&t (MOTOR-ENTITY-SPEED(MOTOR) <- 'INADEQUATE)
&t (return-symbol <- 'ABNORMAL-SHUTDOWN)

return-symbol

function FURNACE-MOTOR-ON() symbol
let(return-symbol :symbol -undefined)

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) - 'OFF)
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(IGNITION-ENTITY-STATUS (IGNITION) <- 'OFF)
&t (VALVE-STATUS COIL-VALVE) <- 'CLOSED)
ft (MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
& (return-symbol <- 'OFF);

(MOTOR-ENTITY-SPEED (MOTOR) - 'ADEQUATE)
k (MASTER-SWITCH-ENTITY-STATUJS(MASTER-SWITCH) -'ON)

CIGNITION-ENTITY-STATUS (IGNITION) <- 'ON)
ft (VALVE-STATUS (OIL-VALVE) <- 'OPEN)
&t (MOTOR-ENTITY-STATUS (MOTOR) <- 'ON)
ft (return-symbol <- 'WATER-HEATING)

return-symbol
%%%%%%%%%%%%

function FURNACE-IDLE(): symbol-
let (return-symbol :Bymbol = undefined)

(THERMOSTAT-TEMP (AIR) < (CONTROLLER-ENTITY-TR (CONTROLLER) -2))

ft (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = 'ON)

(MOTOR-ENTITY-STATUS (MOTOR) <- 'ON)
kt (return-symbol <- 'MOTOR-ON);

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) ='OFF)

(MOTOR-ENTITY-STATUS (MOTOR) <- 'OFF)
It (return-symbol <- 'OFF)

return-symbol

function FURNACE-OFF(): symbol=
let(return-symbol :symbol - undefined)

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) ='ON)

(return-symbol <- 'IDLE)

return-symbol

%%% Define function for each state object

function HOLDO : return-values -
let (valid-ext-event :seq(symbol)

('SYSTEM-TURNED-OFF, 'RESET-SYSTEM].
valid-event-beb seq(symbol)
['SYSTEM-TURNED-OFF-BEH, 'RESET-SYSTEM-BEHI,

state-beh :seq(symbol) - ['FURNACE-ABNORMAL],
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return-tuple :return-values - undefined)

format (true. "The current state of the system is HOLD");
(if

(TIMER-STATUS (FIVE-SEC-TIMER) - 'OFF) and
(TIMER-STATUS (FIVE-KEN-TIMER) - 'OFF) and
(MOTOR-ENTITY-STATUS (MOTOR) -'OFF) and
(VALVE-STATUS CWATER-VALVE) -'CLOSED) and
(VALVE-STATUS (OIL-VALVE) - 'CLOSED) and
(IGNITION-ENTITY-STATUS (IGNITION) - 'OFF)

then
foruat(true, "X- VALID STATE SPACE-");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beh>

else
format (true, "% INVALID STATE SPACE-");
return-tuple <- <'invalid, [I, ['HOLD], state-beh>);

return-tuple

function WAIT5MINUTESO : return-values=
let (valid-ext-event :seq(symbol) -

['FIVE-MIN-TIMER-EXPIRES),
valid-event-beh :seq(symbol) -
['FIVE-MIN-TIMER-EIPIRES-BEHJ,

state-beh :seq(symbol) - ['FURNACE-WAITIIG),
return-tuple :return-values - undefined)

format (true, "The current state of the system is WAIT5MINUTES");
(if

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) -'ON) and
(MOTOR-ENTITY-STATUS (MOTOR) - 'OFF) and
(SENSOR-STATUS (FUEL-SENSOR) -'SAFE) and
(SENSOR-STATUS (COMBUSTION-SENSOR) = 'SAFE) and
(VALVE-STATUS (WATER-VALVE) -'CLOSED) and
(VALVE-STATUS (OIL-VALVE) -'CLOSED) and
(IGNITION-ENTITY-STATUS(IGNITION) - 'OFF) and
(TIMER-STATUS (FIVE-SEC-TIMER) - 'OFF) and
(TIMER-STATUS (FIVE-KEN-TIMER) - 'ON)

then
format(true, "-% VALID STATE SPACEi-");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beb>

else
format(true, 1"X INVALID STATE SPACE-%");
return-tuple <- <'invalid, [], ['WAITSMINUTES], stat e-beh>);

return-tuple

function ABNORMAL-SHUTDOWN(): return-values
let (valid-ext-event :seq(syinbol) -

['FIVE-SEC-TIMER-EXPIRES),
valid-event-beh :seq(symbol) -
['FIVE-SEC-TIMER-EXPIRES-BEH],

state-beh :seq(symbol) - ['ABNORMAL-FURNACE-SHUTTING-DOWN],
return-tuple :return-values - undefined)

format(true, "The current state of the system is ABPIRMAL-SHUTDOWN"I);
(if

(MOTOR-ENTITY-STATUS (MOTOR) - 'OFF) and
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(MOTOR-ENTITY-SPEED(MOTOR) - 'INADEQUATE) and
(VALVE-STATUS (OIL-VALVE) - 'CLOSED) and
(TIMER-STATUS(FIVE-SEC-TIMER) - 'ON)

then
format Ctrue, `% VALID STATE SPACE I");
return-tuple <- <'valid, valid-ext-event, valid-event-beig, state-beli)

else
format (true, "% INVALID STATE SPACE-%");
return-tuple <- <'invalid, [), ['ABNORMAL-SHUTDOWN], state-beh>);

return-tuple

function SHUTDOWN(): return-values
let (valid-ext-event :seq(symbol) -

['FIVE-SEC-TIMER-EXPIRES] 
,

valid-event-beh :seq(symbol) -
['FIVE-SEC-TINER-EXPIRES-BEH],

state-beh :seq(symbol) = ['FURNACE-SHUTTING-DOWN],
return-tuple :return-values - undefined)

format (true, "The current state of the system is SHUTDOWN");
(if

CHASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) - 'ON) and
(THERMOSTAT-TEMP (AIR) >- (CONTROLLER-ENTITY-TR(CONTROLLER) + 2)) and
(MOTOR-ENTITY-STATUS (MOTOR) - 'ON) and
(SENSOR-STATUS (FUEL-SENSOR) - 'SAFE) and
(SENSOR-STATUJS(COMBUSTION-SENSOR) - 'SAFE) and
(VALVE-STATUS (WATER-VALVE) - 'OPEN) and
(VALVE-STATUS (OIL-VALVE) - 'CLOSED) and
(TIMER-STATUS (FIVE-SEC-TIMER) = 'ON)

then
format(true, "`% VALID STATE SPACE-%");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beh>

else
format(true, "-% INVALID STATE SPACE-%");
return-tuple <- <'invalid, [], ['SHUTDOWN], state-beh>);

return-tuple

function RUNNING(): return-values =

let (valid-ext-event :seq(symbol) -
['UNSAFE-FUEL-SENSOR, 'UNSAFE-COMBUSTION-SENSOR,

'SWITCH-TURNED-OFF, 'AIR-TEMP--ABOVE-PRESET],
valid-event-beh :seq(symbol) =

['UNSAFE-FUEL-SENSOR-BEH, 'UNSAFE-COMBUSTION-SENSOR-BEH,
'SWITCH-TURNED-OFF--BEH, 'AIR-TEMP-ABOVE-PRESET-BEH],

state-beh :seq(symbol) - ['FURNACE-RUNNING],
return-tuple :return-values - undefined)

format(true, "The current state of the system is RUNNING");
(if

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) - 'ON) and
(THERMOSTAT-TEMP (AIR) < (CONTROLLER-ENTITY-TR (CONTROLLER) + 2)) and
(MOTOR-ENTITY-STATUS (MOTOR) - 'ON) and
(MOTOR-ENTITY-SPEED(MOTOR) - 'ADEQUATE) and
(THERMOSTAT-TEMP (WATER) >- CONTROLLER-ENTITY-TW (CONTROLLER)) and
(SENSOR-STATUS(FUEL-SENSOR) - 'SAFE) and
(SENSOR-STATUS (COMBUSTION-SENSOR) - 'SAFE) and
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(VALVE-STATUS (WATER-VALVE) - 'OPEN) and
(VALVE-STATUS COIL-VALVE) - 'OPEN)

then
format (true, 11-% VALID STATE SPACE-%.");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beh>

else
format (true, `~% INVALID STATE SPACE-%");
return-tuple <- <'invalid, [I, ['RUNNING], state-beh>);

return-tuple

function HATER-HEATING C) return-values
let (valid-ext-event :seq~symbol) -

['UNSAFE-FUEL-SENSOR, 'UUSAFE-CONBUSTION-SENSOR,
'SWITCH-TURNED-OFF, 'WATER-TEMP-ABOVE-PRESET],

valid-event-beh :seq~syzbol) -
['UNSAFE-FUEL-SENSOR-BEH, 'UNSAFE-COMBUSTION-SENSOR-BEH,

'SWITCH-TURNED-OFF-BEH, 'HATER-TEMP-ABOVE-PRESET-BEH],
state-beh :seq~symbol) ['PFURNACE-HATER-HEATING],
return-tuple :return-values - undefined)

format (true, "The current state of the system is HATER-HEATING");
(if

(MASTER-SHITCH-ENTITY-STATUS CRASTER-SHITCH) - 'ON) and
(THERMOSTAT-TEMP (AIR) < CCONTROLLER-EUTITY-TRC(CONTROLLER) + 2)) and
CMOTOR-ENTITY-STATUSC(MOTOR) 'ON) and
(MOTOR-ENTITY-SPEED (MOTOR) ='ADEQUATE) and
(THERMOSTAT-TEMP (HATER) < CONTROLLER-ENTITY-TUC(CONTROLLER)) and
(SENSOR-STATUS (FUEL-SENSOR) - 'SAFE) and
(SENSOR-STATUS (COMBUSTION-SENSOR) - 'SAFE) and
(VALVE-STATUS (HATER-VALVE) -'CLOSED) and
(VALVE-STATUS COIL-VALVE) - 'OPEN)

then
format (true, I`% VALID STATE SPACE-%");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beh>

else
format (true, "-% INVALID STATE SPACE-%");
return-tuple <- <'invalid, [I, ['WATER-HEATING), state-beh>);

return-tuple

function MOTOR-ONOC: return-values
let (valid-ext-event :seq (symbol) =

['SHITCH-TURNED-OFF, 'ADEQUATE-MOTOR-SPEED),
valid-event-beh seq~symbol)=

['SHITCH-TURNED-OFF-BEH, 'ADEQUATE-MOTOR-SPEED-BHER,
state-beh :seq~symbol) - ['FURNACE-MOTOR-ON),
return-tuple :return-values - undefined)

format (true, "The current state of the system is MOTOR-ON");
C(if

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) - 'ON) and
CMOTOR-ENTITY-STATUSC(MOTOR) -'ON) and
(MOTOR-ENTITY-SPEED (MOTOR) ='INADEQUATE) and
(THERMOSTAT-TEMP (AIR) < (CONTROLLER-ENTITY-TR (CONTROLLER) -2)) and
CIGNITION-ENTITY-STATUSCIGNITIOI) - 'OFF) and
(VALVE-STATUS COIL-VALVE) - 'CLOSED)

then
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format(true, `% VALID STATE SPACE'X");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beli>

else
I ormat(true, 11-% INVALID STATE SPACE-%");
return-tuple <- <'invalid, [,['MOTOR-OK), state-beh>);

return-tuple

function IDLEC): return-values
let (valid-ext-event :seq~symbol)=

['SWITCH-TURNED-OFF, 'AIR-TEMP-BELOW-PRESETJ,
valid-event-beh :seq(symbol) -

r' SWITCH-TURiED-OFF-BEH, 'AIR-TENP-BELIJW-PRESET-BEH),
state-beli: seq(symbol) - ['FURNACE-IDLEJ,

return-tuple :return-values = undefined)

format (true, "The current state of the system is IDLE");
Cif

(MASTER-SWITCH-ENTITY-STATUS CHASTER-SWITCH) - 'ON) and
(TIMER-STATUS (FIVE-MIN-TIMER) = 'OFF) and
(TIMER-STATUS (FIVE-SEC-TIMER) = 'OFF)

then
format (true, "-% VALID STATE SPACE-");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beb>

else
format (true, `% INVALID STATE SPICE-%");
return-tuple <- <'invalid, U,['IDLE], state-beh>);

return-tuple

function OFFC): return-values=
let (valid-ext-event :seq~symbol) -

['SWITCH-TURNED-ONJ,
valid-event-beh :seq~symbol) =

S' SWITCH-TURNED-ON-BEHJ,
state-beh :seq(symbol) -['FURNACE-OFFJ,
return-tuple :return-values = undefined)

format (true, "The current state of the system is OFF");
C(if

CHASTER-SWITCH-ENTITY-STATUS CHASTER-SWITCH) ='OFF)
then

format (true, I"% VALID STATE SPACE-%");
return-tuple <- <'valid, valid-ext-event, valid-event-beh, state-beb>

else
format (true, "-% INVALID STATE SPACE-%");
return-tuple <- <'invalid, [1, ['OFF), state-beh>);

return-tuple

function siuC)
let Csfunction return-values - undefined,

st-name :symbol - 'OFF, UX assume first state in OML file is initial
done boolean - false,
reply integer - undefined)

while -done do
sfunction <- funcall~st-name);
(if of unction. validity - 'valid then
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reply <- Make-Henu(sfunction.events, "Events that can occur:");
(if Reply <- size(sfunction.events) then

funcall(sfunction.behaviors(reply));

enumerate st-beh over sfunction.st-behaviors do
st-name <- funcall(st-beh)

elseif Reply = size(sfunction.events)+2 then

done <- true U selects quit
)

else %% not valid state

done <- true;
format (true, "The system's current state space conflicts with
the state space required to be in the above mentioned state. Here are the
current attribute values in the system. Compare them with the required values

specified in your specification to find the inconsistencies.-%");

(enumerate obj over [obj I (obj : HOME-HEATER) HONE-HEATER(obj)] do
(enumerate attr over Return-Attribute-List(obj) do

format(true, " ~A.~A : -A~V",name(obj), name(attr), retrieve-attribute(obj, attr))

%%% Define function for each process object

%%% Defines function for erasing all objects in Refine's database.
%%% Execute this function before you reload this file if you do not use
%%% the convert process.

function clear-objectsO =
(enumerate obj over [obj I (obj : HOME-HEATER) HONE-HEATER(obj)] do

erase-object (obj))
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Appendix E. Library Problem Analysis

This problem is from the problem set for the Fourth International Workshop on Software

Specification and Design. It is based on R.A. Kemmerer's "Testing formal specifications to detect

design errors". The initial ERM and DFMs were composed by Blankenship (6:Appendix F), but

were modified to improve their understandability.

E.1 Problem Statement

"Consider a small library database with the following transactions:

1. Check out a copy of a book / Return a copy of a book;

2. Add a copy of a book to / Remove a copy of a book from the library;

3. Get the list of books by a particular author or in a particular subject area;

4. Find out the list of books currently checked out by a particular borrower;

5. Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1, 2, 4 and 5

are restricted to staff users, except that ordinary borrowers can perform transaction 4 to find out

the list of books currently borrowed by themselves. The database must also satisfy the following

constraints:

1. All copies in the library must be available for checkout or be checked out.

2. No copy of the book may be both available and checked out at the same time.

3. A borrower may not have more than a predefined number of books checked out at one time.

(18)"
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Figure 25. Library: Entity Relationship Model (6:F-12)

E. 2 Entit~j.Relaiionskip Models

The entity relationship model shows the primary objects in the system and the relationships

between them. The library system contains books and users. The relationships in the diagram

identify operations that will be required on users and books. A transaction is an entity that is used

to transport information from the user interface to the process needing that information.

E.3 Data Flow Models
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S~ Library
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Figure 26. Library: Context Diagram (6:F-8)

The context diagram, Figure 26, shows the system's interaction between Users and the stores

of books and authorized users. This interaction is expanded in Figure 27. All data flows that have

a missing terminator are assumed to be flowing from or to an external entity. We have adopted

a notion from Rumbaugh that allows a process to search an entire store. These are shown as

unlabelled flows. (23:127) Addition or deletion of an item from a store is shown by a singled-

headed arrow flowing into a store. Double-headed arrows between a process and a store denote

the retrieval, modification, and replacement of an item in a store. We have also required that all

flows have unique names. This facilitates an automated translation without having to generate

parameterized behaviors. Transactions and User-Names allow Process 1 of Figure 27 to determine

authorized users and distinguish staff users from ordinary borrowers. Process 2 determines the

type of staff-authorized transaction requested, queries stores, and produces the appropriate lists as

output. Process 3 performs ordinary borrower transactions.
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Figure 27. Library: Level 0

Figures 28, 29, and 30 expand Processes 1, 2, and 3 from the Level 0 DFD. Process 1

further decomposes into two lower-level processes: one to check the User data store and ensure

that the user is authorized; the other to place controlling information in the transaction record.

The transaction record is assumed to be input by the user and to contain all needed information

to correctly complete the requested transaction. Process 1.1 produces an out-flow to notify a user

who is not authorized access to the information in the system. Process 1.2 places the correct user

level (staff or ordinary) in the transaction to restrict which transactions may be performed.

Process 2 decomposes into a transaction center and a set of processes representing each

operation that is available to a staff user. Process 2.1 inspects TRANSACTION-1.trans-type and

fills the appropriate out-flow, depending on its content. Processes 2.2 through 2.11 operate on

information received in their Transaction flows. They also access and update stores as required by

their function. For example, Process 2.4 (Check-Out Book) and Process 2.5 (Return Book) access
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Figure 28. Library: Level 1

and update both Books and Users data stores. Each process must verify the status of the book

being operated on, update the book's status to checked-out or available, and retrieve and update

the number of books the user has checked out. Return Book must also update the last borrower of

a returned book in the Book data store. Processes 2.6 through 2.9 produce out-flows of Book-List.

Book-List is a set of books that would be displayed to the User. These are modeled in the processes'

behaviors using OML's display function. No Flow objects named Book-List are required.

Process 3 also decomposes into transaction center and processes representing operations.

Users have only one unique operation: listing books that they have borrowed. The other two

operations shown are Level 2 processes, but have been included in Figure 30 for clarity.
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E.4 Library Problem OML Specification

This specification maps directly to OML from the models shown above with the following

irregularities:

"* In some cases, data flows to external entities have been modeled by a display rather than a

flow when that flow was providing output information to the user. Book-List is an example

of this type of data flow.

"* The User entity class is defined in the ERM as having two subclasses. Because these subclasses

had no unique attributes, they were differentiated using an attribute rather than creating

subtypes and composing an ISA relation.

"* Unlabeled arrows from stores to processes represent searches over the store to verify data.

These flows are not modeled as OML flows because no data is ever removed from the store.

They have been implemented by using OML's "exists" in the preconditions of the behavior's

OML specification.
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%%%%y.....7yy.%%.Xy.Y.%%%%.y.%%%.Y.%Y.Y.7'.Y.y.y.%y.Y.%=%%Y'.YX'.%%.%.Y.%Y.Y.Y.%Y.Y.Y=%Y.%Y.%%=%Y..Y.Y.Y.%Y.Y

=%'/. File-Name : l.spec (Library Specification)

%%%. Authors Capt Mary Boom, Capt Brad Mallare %%%.

=.V.Y. Purpose OWL specification for the library problem.
%.%..
%.%% Unified Abstract Model Components %%%
%%% Entities, Relationships, Processes, Flows, Stores, Behaviors, and %%%
%7'V. Relation-Tables %.

%%% Operation : After loading the translation code (trans-oml.fasl4) and YO.U.
=.% all the other code that it is dependent on, this OHL specification %%%/.
%%%7 can be translated into an executable specification by typing the %%%
%%% following command at the Refine prompt: %%%

%%%.7' (convert "<your-OML-file-name>") %%%

%%% The name of the generated executable specification will be displayed %%%
%%%'7 on the screen. Additionally, the executable specification will be %Y./.%
%%.*/. automatically compiled and loaded.

%%%. After this file is translated, compiled, and loaded into Refine, %Y.%
%%%. it can be executed by typing the following command at the Refine '/.%V.
%%Y. prompt: 'h'h'/
Y.$/.`/C (sim) %%%

specification library

%7.7.%%%%%%7 ENTITIES %%%%%%%%%%

USER class-of entity
type : internal

parts
user-name : string;
kind : symbol range {staff, ordinary};
book-count : integer range {O .. 10}

LIBRARIAN instance-of user
values

user-name : "librarian";
kind : staff;
book-count : 0

BOOM instance-of user
values

user-name : "boom";
kind : ordinary;
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book-count : 1

kALLARE instance-of user
values

user-name : "mallare";
kind : ordinary;
book-count : 1

BOOK class-of entity
type : internal

parts
book-id string;
author string;
title string;
subject string;
last-user : string;
current-borrower : string;
status : symbol range {available, checked-out}

BOOK1 instance-of book
values

book-id :"QA76.11";
author Ritchie;
title "The C Programming Language";
subject : "programming";

last-user : "none";
current-borrower : "Boom";

status : checked-out

BOOK2 instance-oi book
values

book-id :"QA76.2";
author "Silberschatz";
title "Operating System Concepts";
subject : "operating systems";
last-user : "none";
current-borrower : "Nallare";
status : checked-out

OUTSIDE instance-of entity
type : external

FLOW-iNKE class-of entity
type : internal

parts
N : string

TRANSACTION class-of entity
type : internal

parts
user-kind : symbol range {staff, ordinary};
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borrower-name string;
borrower-kind symbol range {staff, ordinary};

% book-name : symbol;
book-id string;
author string;
title : string;
subject string;
trans-type : symbol range {add-book, remove-book, check-out-book,

return-book, list-books-by-author,
list-books-by-subject,
list-books-by-borrower, list-my-books,
list-last-borrower, add-user, remove-user}

MESSAGE class-of entity
type internal

parts
text string

ERROR-MESSAGE instance-of MESSAGE
values

text : "Unauthorized User. See Librarian for assistance."

%%%%%X%%%% RELATIONSHIPS %%%%%/.%%%%%

Adds instance-of Relationship
type : general
cardinality : 1-1

Removes instance-of Relationship
type : general
cardinality : 1-1

Checks-Out instance-of Relationship
type : general
cardinality : 1-1

Returns instance-of Relationship
type : general
cardinality : 1-1

Gets-Subject-Listing instance-of Relationship
type : general
cardinality : 1-I

Gets-Author-Listing instance-of Relationship
type : general
cardinality : 1-1

Lists-Last-Borrower instance-of Relationship
type : general
cardinality : 1-1
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Lists-All-Borrowed instance-of Relationship
type : general

cardinality : 1-m

List-Own-Borrowed instance-of Relationship
type : general
cardinality : 1-m

Add-Book-Behavior instance-of Relationship
type :ICO
cardinality : 1-1

XXXXXXXX% PROCESSES XXX%%%XXV.%

SET-USER-TYPE instance-of Process %I 1.1

DETERMINE-TRANS-TYPE instance-of Process XX 1.2

DETERMINE-STAFF-TRANS instance-of Process XY. 2.1

ADD-BOOK instance-of Process XX 2.2

REMOVE-BOOK instance-of Process X 2.3

CHECK-OUT-BOOK instance-of Process XX2.4

RETURN-BOOK instance-of Process XX 2.5

LIST-BOOKS-BY-AUTHOR instance-of Process XX 2.6

LIST-BOOKS-BY-SUBJECT instance-of Process XX 2.7

LIST-BOOKS-BY-BORROWER instance-of Process U 2.8

LIST-LAST-BORROWER instance-of Process X% 2.9

ADD-USER instance-of Process XX 2.10

REMOVE-USER instance-of Process XX 2.11

DETERMINE-USER-TRANS instance-of Process XX 3.1

LIST-MY-BOOKS instance-of Process UX 3.2

XXXXXXXX% BEHAVIORS XXXY.XXXXXX
XXX LEVEL 1 XXX

SETTING-USER-TYPE instance-of Behavior

exists (User) (User in Users &
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User.User-Name = User-Uame-i.1 &

User.kind = staff)

User-Type-l.kind := staff
event none;

exists (User) (User in Users
User.User-Name = User-Name-i.N
User.kind = ordinary)

User-Type-l.kind := ordinary
User-Type-l.User-Name := User-Name-i.N
event none;

not exists (User) (User in Users k
User.User-Name = User-Name-i.N)

Display(Error-Message. Text)
event none

DETERMINE-TRANSACTION instance-of Behavior

User-Type-l.kind = staff

Transaction-I := New-Trans k
Transaction-l.user-kind := staff
event none;

User-Type-l.kind = ordinary

Transaction-2 := New-Trans k
Transaction-2.user-kind := ordinary &

Transaction-2.Borrower-Name := User-Type-l.User-Name
event none

%%% LEVEL 2 %%%

DETERMINING-STAFF instance-of Behavior

Transaction-l.trans-type = add-book

Transaction-3 := Transaction-i
event none;

Transaction-l.trans-type = remove-book

Transaction-4 := Transaction-i
event none;

Transaction-l.trans-type = check-out-book
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Transaction-5 := Transaction-I
event none;

Transaction-i .trans-type = return-book

Transaction-6 :=Transaction-i
event none;

Transact ion-i .trans-type = list-books-by-author

Transaction-10O: Transaction-i
event none;

Transaction-i. trans-type = list-books-by-subj ect

Transact ion-8 := Transaction-i
event none;

Transaction-i .trans-type = list-books-by-borrower

Transaction-i2 :=Transaction-i
event none;

Transaction-i .trans-type = list-last-borrower

Transaction-7 :=Transaction-1
event none;

Transaction-i .trans-type = add-user

Transaction-9 :=Transaction-i
event none;

Transaction-i .trans-type = remove-user

Transaction-il : Transaction-i
event none

ADDING-BOOK instance-of Behavior
not exists (book) (book in Books &

book. Book-Id = Transact ion-3 .Book-Id)

% Updated-Book-i .lame := Transaction-3 .book-name &
Updated-Book-i .book-id =Transaction-3 .book-id &t
Updated-Book-i.author Transaction-3.author k
Updated-Book-i.title Transaction-3.title *t
Updated-Book-i .subject := Transaction-3 .subject kt
Updated-Book-i.last-user := "nne k
Updatead-Book-i1. current -borrower := "none"&f
Updated-Book-I.status := available &t
Books.: Books union Updated-Book-i %%set addition
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event none

REMOVING-BOOK instance-of Behavior
exists (book) (book in Books k

book.Book-Id =Transaction-4.Book-Id k
Book.status available)

Books :=Books set-diff {Book I book in Books &
book.book-id = Transaction-4.Book-Id} %Vset removal

event none

CHECKING-BOOK-OUT instance-of Behavior U% Book-name are names of objects.
exists (book) (book in Books &

book.Book-Id = Transaction-B.Book-Id k
Book.status = available) k

exists (user) (user in Users &
user. User-Name = "ransact ion-S. Borrower-Name k
user.book-count < 10)

Updated-Book-3 :=getitemC{Book I book in Books &
book.book-id = Transaction-S.Book-id}) &

Updated-Book-3.status :=checked-out k
Updated-Book-3 .current-borrower := Transaction-S. Borrower-Name &

% Books := Books union Updated-Book-3 &
Updated-Name-i : getitem({User I user in Users k

user.User-Name = Transaction-B.Borrower-Name}) k
Updated-lame-I .book-count :=Updated-Name-I .book-count + I

% Users :=Users union Updated-Name-i
event none

RETURNING-BOOK instance-of Behavior
exists (book) (book in Books k

book.Book-Id = Transaction-6.Book-Id&
Book.status =checked-out)

Updated-Book-4 :=getitem({Book I book in Books &
book.book-id =Transaction-6.Book-id})

Updated-Book-4.status :=available
Updated-Book-4 .last-user := Transact ion-6 .Borrower-Name&

Updated-Book-4. current-borrower := "none" &
% Books :=Books union Updated-Book-4 k

Updated-Name-2 := getitem({User I user in Users k
user.User-lame = Transaction-6.Borrower-lame}) k

Updated-Name-2.book-count :=Updated-Name-2.book-count - I
% Users := Users union Updated-Tame-2

event none

LISTING-BY-AUTHOR instance-of Behavior
true

Display({Book I Book in Books k

289



book. author = Transaction-jO. author})
event none

LISTING-BY-SUBJECT instance-of Behavior
true

Display ({Book I book in books
book. subj ect =Transaction-8. subj ect})

event none

LISTING-BY-BORROWER instance-of Behavior
exists (user) (user in Users &

user .User-Name = Transaction-12 .Borrower-lane)

Display({Book I book in book& k
book. current-borrower =Transact ion-12 .Borrower-Name k
book.status = checked-out})

event none

LISTING-LAST-BORROWER instance-of Behavior
exists (book) (book in Books A

book. Book-Id = Transaction-7 .Book-Id)

Display({Book I book in books k
Book. last-user =Transact ion-7 .Borrower-Naine})

event none

ADDING-USER instance-of Behavior
not exists (user) (user in Users k

user. User-Name = Transact ion-9. Borrower-Name)

Updated-Name-3 .user-name := Transact ion-9.borrower-name k
Updated-Name-3 .kind :=Transaction-9 .borrower-kind

Updated-Name-3.book-count :=0 k
Users :=Users union Updated-lame-3 %%Y Set addition
event none

REMOVING-USER instance-of Behavior
exists (user) (user in Users

user.User-lame =Transaction-il. Borrower-Name k
user.book-count =0)

Users := Users set-diff (user Iuser in Users k
user.user-name = Transaction-ll.Borrower-Name} UX Set removal

event none

%%% LEVEL 3 *%X%

DETERMINING-USER instance-of Behavior

Transact ion-2 .trans-type = list-books-by-author
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Transaction-1O := Transaction-2
event none;

Transaction-2.trans-type = list-books-by-subject

Transaction-8 := Transaction-2
event none;

Transaction-2.trans-type = list-my-books

Transaction-13 := Transaction-2

event none

LISTING-BORROWED-BY-USER instance-of Behavior
true

Display({Book I book in books &
book. current-borrower = Transact ion- 13. Borrower-Name})

event none

% //./.%.Y.Y/%.• FLOWS Y.%.%.%h

USER-NAME-i instance-of Flow
flow-link entity-proc
flow-data Flow-Name

NEW-TRANS instance-of Flow
flow-link entity-proc
flow-data Transaction

USER-TYPE-i instance-of Flow
flow-link proc-proc
flow-data User

TRANSACTION-i instance-of Flow
flow-link proc-proc
flow-data Transaction

TRANSACTION-2 instance-of Flow
flow-link proc-proc
flow-data Transaction

UPDATED-BOOK-I instance-of Flow
flow-link proc-store
flow-data Book

TRANSACTION-3 instance-of Flow
flow-link proc-proc
flow-data Transaction
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UPDATED-BOOK-2 instance-of Flow
flow-link proc-store
flow-data Book

TRANSACTION-4 instance-of Flow
flow-link proc-proc
flow-data Transaction

UPDATED-NAME-I instance-of Flow
flow-link proc-store
flow-data User

UPDATED-BOOK-3 instance-of Flow
flow-link proc-store
flow-data Book

TRANSACTION-S instance-of Flow
flow-link proc-proc
flow-data Transaction

UPDATED-NAME-2 instance-of Flow
flow-link : proc-store
flow-data : User

UPDATED-BQOK-4 instance-of Flow
flow-link proc-store
flow-data Book

TRANSACTION-6 instance-of Flow
flow-link proc-proc
flow-data Transaction

TRANSACTION-7 instance-of Flow
flow-link proc-proc
flow-data Transaction

TRANSACTION-8 instance-of Flow
flow-link proc-proc
flow-data Transaction

TRANSACTION-9 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

TRANSACTION-1O instance-of Flow
flow-link proc-proc
flow-data Transaction

TRANSACTION-11 instance-of Flow
flow-link : proc-proc
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flow-data : Transaction

TRANSACTION-12 instance-of Flow
flow-link : proc-proc
flow-data Transaction

TRANSACTION-13 instance-of Flow
flow-link : proc-proc
flow-data Transaction

UPDATED-NAME-3 instance-of Flow

flow-link : proc-store
flow-data User

UPDATED-NAME-4 instance-of Flow
flow-link : proc-store
flow-data : User

ERROR-MESSAGE-i instance-of Flow
flow-link proc-entity
flow-data : message

% Y STORES % /

USERS instance-of Store
nature : set
content: user

BOOKS instance-of Store
nature : set
content: book

/.%%/.%/.% RELATION-TABLE %%%%%%%%%%

Entity-Relation instance-of Relation-Table

%NOTE: These are associations between entity classes! This is a result of
% the hierarchy

%% Entity Association Entity U

USER, ADDS, USER;
USER, REMOVES, USER;
USER, ADDS, BOOK;
USER, REMOVES, BOOK;
USER, CHECKS-OUT, BOOK;
USER, RETURNS, BOOK;
USER, GET-SUBJECT-LISTING, BOOK;
USER, GET-AUTHOR-LISTING, BOOK;
USER, LISTS-LAST-BORROWED, BOOK;
USER, LISTS-ALL-BORROWED, BOOK;
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USER, LISTS-OWl-BORROWED, BOOK;

%(Process-Behavior instance-of Relation-Table

%%Process Assoc Behavior V
DETERMINE-TRANS-TYPE, ICa, DETERMINE-TRANSACTION;
SET-USER-TYPE, Ica, SETTING-USER-TYPE;
DETERMINE-STAFF-TRANS, ICa, DETERMINING-STAFF;
ADD-BOOK, ICO, ADDING-BOOK;
REMOVE-BOOK, ICa, REMOVING-BOOK;
CHECK-OUT-BOOK, Ica, CHECKING-BOOK-OUT;
RETURN-BOOK, ICO, RETURNING-BOOK;
LIST-BOOKS-BY-AUTBOR, ICO, LISTING-BY-AUTHOR;
LIST-BOOKS-BY-SUBJECT, ICa, LISTING-BY-SUBJECT;
LIST-BOOKS-BY-BORROWER, ICa, LISTING-BY-BORROWER;
LIST-LAST-BORROWER, ICO, LISTING-LAST-BORROWER;
LIST-MY-BOOKS, ICa, LISTING-BORROWED-BY-USER;
ADD-USER, Ica, ADDING-USER;
REMOVE-USER, ICa, REMOVING-USER;
DETERMINE-USER-TRANS, ICa, DETERMINING-USER;

%Flow-type-things instance-of Relation-Table

%'/.*/ Object Flow Object

XLEVEL 1
OUTSIDE, USER-N LME-1, SET-USER-TYPE;
OUTSIDE, NEW-TRANS, DETERMINE-TRANS-TYPE;
SET-USER-TYPE, ERROR-MESSAGE-i, OUTSIDE;
SET-USER-TYPE, USER-TYPE-i, DETERMINE-TRANS-TYPE;
DETERMINE-TRANS-TYPE, TRANSACTION-i, DETERMINE- STAFF-TRANS;
DETERMINE-TRANS-TYPE, TRANSACTION-2, DETERMINE-USER-TRANS;

%'/LEVEL 2

ADD-BOOK, UPDATED-BOOK-i, BOOKS;
DETERMINE- STAFF-TRANS , TRANSACTION-3, ADD-BOOK;

REMOVE-BOOK, UPDATED-BDOK-2, BOOKS;
DETERMINE-STAFF-TRANS, TRANSACTION-4, REMOVE-BOOK;

CHECK-OUT-BOOK, UPDATED-NAME-i, USERS;
CHECK-OUT-BOOK, UPDATED-BOOK-3, BOOKS;
DETERMINE-STAFF-TRANS, TRANSACTION-5, CHECK-OUT-BOOK;

RETURN-BOOK, UPDATED-NAME-2, USERS;
RETURN-BOOK, UPDATED-BOOK-4, BOOKS;
DETERMINE-STAFF-TRANS, TRANSACTION-6, RETURN-BOOK;

DETERMINE-STAFF-TRANS, TRANSACTION-7, LIST-LAST-BORROWER;

DETERMINE-USER-TRANS, TRANSACTION-S, LIST-BOOKS-BY-SUBJECT;
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DETERMIUE-STAFP-TRANS, TRANSACTION-8, LIST-BOOKS-BY-SUBJECT;

DETERMINE-USER-TRANS 3 TRAISACTION-10, LIST-BOOKs-BY-AUTHOR;
DETERNINE-STAFF-TRANS, TASCIN1, LIST-BOOKS-BY-AUTHOR;

DETERMINE-STAFF-TRANS. TRANSACTION-12, LIST-BOOKS-BY-BORROWER;

DETERMINE-USER-TRANS. TRANSACTIOI-13. LIST-NY-BOOKS;

DETERMINE-STAFF-TRANS, TRANSACTION-9, ADD-USER;
ADD-USER, UPDATED-NAME-3, USERS;

DEEMIESTF-AS, TRANSACTION-Il, REMOVE-USER;
REMOVE-USER, UPDATED-NAME-4, USERS
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E.5 Library Problem REFINE Executable Specification

! in-package ('RU)
I' in-grammar ('user)

var OML-Obj object-class subtype-of user-object

var LIBRARY : object-class subtype-of OHL-Obj

type return-values = tuple(validity: symbol,

next-procs : seq(symbol))

%X% Define object classes

var MESSAGE : object-class subtype-of LIBRARY
var MESSAGE-TEXT: map(MESSAGE, string) - {I(}

var TRANSACTION : object-class subtype-of LIBRARY
var TRANSACTION-USER-KIND: map(TRANSACTION, symbol) - { }
var TRANSACTION-BORROVER-NAME: map(TRPNSACTION, string) - I I }
var TRANSACTION-BORROWER-KIND: map (TRANSACTION, symbol) {I I}
var TRANSACTION-BOOK-ID: map(TRANSACTION, string) = {I I}
vaT TRANSACTION-AUTHOR: map(TRANSACTION, string) • {I }
var TRANSACTION-TITLE: map (TRANSACTION, string) - { I}
var TRANSACTION-SUBJECT: map(TRANSACTION, string) f {I I}
var TRANSACTION-TRANS-TYPE: map(TRANSACTION, symbol) f {I }

var FLOW-NAME : object-class subtype-of LIBRARY

var FLOW-NAME-N: map(FLOW-NAME, string) = | I}

var BOOK : object-class subtype-of LIBRARY
var BOOK-BOOK-ID: map(BOOK, string) f {I l
var BOOK-AUTHOR: map(BOOK, string) = {II}
var BOOK-TITLE: map(BOOK, string) = {II}
var BOOK-SUBJECT: map(BOOK, string) f {II}
var BOOK-LAST-USER: map(BOOK, string) - {I I}
var BOOK-CURRENT-BORROWER: map(BOOK, string) - {I l}
var BOOK-STATUS: map(BOOK, symbol) - {I I}

var USER : object-class subtype-of LIBRARY

var USER-USER-NAME: map(USER, string) - { I}
var USER-KIND: map(USER, symbol) = {II}
var USER-BOOK-COUNT: map(USER, integer) - {III

%XX Define instances of object classes

var ERROR-MESSAGE : MESSAGE -
set-attrs (make-object ('MESSAGE),

'name, '*ERROR-MESSAGE,

'MESSAGE-TEXT, "Unauthorized User. See Librarian for assistance.")

var OUTSIDE-ENTITY : object-class subtype-of LIBRARY
var OUTSIDE : OUTSIDE-ENTITY -

set-at trs (make-object ('OUTSIDE-ENTITY),
'name, '*OUTSIDE)
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var BOOK2 : BOOK -

set-attrs (make-object ('BOOK),
'name, '*BOOK2,
'BOOK-BOOK-ID, "QA76.2",
'BOOK-AUTHOR, "Silberschatz",
'BOOK-TITLE, "Operating System Concepts",
'BOOK-SUBJECT, "operating systems",
'BOOK-LAST-USER, "none",
'BOOK-CURRENT-BORROWER, "Mallare",
'BOOK-STATUS, 'CHECKED-OUT)

var BOOK1 : BOOK =

set-attrs(make-object( 'BOOK),

'name, '*BOOKi,

'BOOK-BOOK-ID, "QA76. 1",
'BOOK-AUTHOR, 'RITCHIE,
'BOOK-TITLE, "The C Programming Language",
'BOOK-SUBJECT, "programming",
'BOOK-LAST-USER, "none",
'BOOK-CURRENT-BORROWER, "Boom",
'BOOK-STATUS, 'CHECKED-OUT)

var MALLARE : USER =

set-attrs (make-object ( 'USER),
'name, '*MALLARE,
'USER-USER-NAME, "mallare",
'USER-KIND, 'ORDINARY,
'USER-BOOK-COUNT, 1)

var BOOM : USER -

set-attrs(make-object( 'USER),
'name, '*BOOM,
'USER-USER-NAME, "boom",

'USER-KIND, 'ORDINARY,
'USER-BOOK-COUNT, 1)

var LIBRARIAN : USER =
set-attrs (make-object ('USER),

'name, '*LIBRARIAN,
'USER-USER-NAME, "librarian",
'USER-KIND, 'STAFF,
'USER-BOOK-COUNT, 0)

%%% Define Store Objects

var BOOKS set(BOOK) - {x I (x BOOK) BOOKWx)}

var USERS set(USER) - {x I (x USER) USERWx)}

%%% Define objects for each flow object

var ERROR-MESSAGE-1 : MESSAGE -
set-attrs (make-object ('MESSAGE),

'name, '*ERROR-MESSAGE-1)

var UPDATED-NAIE-4 : USER -
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set-attrs (make-object ('USER),
'name, '*UPDATED-MAKE-4)

var UPDATED-NAIME-3 :USER =

set-attrs (make-object ('USER),
'name, '*UPDATED-NAME-3)

var TRANSACTION- 13 :TRANSACTION
set-attzs (make-object ('TRANSACTION),

'name, '*TRANSACTION-13)

var TRANSACTION-12 :TRANSACTION-
set-attrs (make-object( 'TRANSACTION),

'name, '*TRANSACTION-12)

var TRANSACTION-11l TRANSACTION
set-attrs (make-object( 'TRANSACTION),

'name, '*TRANSACTION-1 1)

var TRANSACTION-10 TRANSACTION
set-attrs (make-object ( TRANSACTION),

'name, '*TRANSACTION-1O)

var TRANSACTION-9 :TRANSACTION
set-attre (make-object( 'TRANSACTION),

'name, '*TRANSACTION-9)

var TRANSACTION-8 :TRANSACTION=
set-attrs (make-object ('TRANSACTION),

'name, '*TRANSACTION-8)

var TRANSACTION-? TRANSACTION
set-attrs (make-object ('TRANSACTION),

'name, '*TRANSACTION-7)

var TRANSACTION-6 :TRANSACTION
set-attrs(make-object( 'TRANSACTION),

'name, '*TRANSACTION-6)

var UPDATED-BOOK-4 :BOOK -
set-attrs (make-object ('BOOK),

'name, '*UPDATED-BOOK-4)

var UPDATED-NANE-2 ;USER =
set-attrs (make-object ('USER),

'name, '*UPDATED-NAKE-2)

var TRANSACTION-5 TRANSACTION
set-attrs (make-object ('TRANSACTION),

'name, '*TRANSACTION-5)

var UPDATED-BOOK-3 :BOOK
set-attrs(make-obJect( 'BOOK),

'name, '*UPDATED-BOOK-3)

var UPDATED-NANE-1 :USER
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set-attrs(make-o'.iject ( 'USER),
'ame, '*TJPDATED-NANE-1)

var TRAISACTION-4 :TRANSACTION
set-attrs (make-object( 'TRANSACTION),

'name, '*TRANSACTION-4)

var UPDATED-BOOK-2 :BOOK -
set-attrs(make-objectC 'BOOK),

'name, '*UPDATED-BOOK-2)

var TRANSACTION-3 :TRANSACTION
set-attrs (make-object( 'TRANSACTION),

'nane, '*TRANSACTION-3)

var UPDATED-BOOK-i BOOK -
set-attrs (make-object ('BOOK),

'nm, '*IJPDATED-BIJOK- 1)

var TRANSACTION-2 :TRANSACTION
set-attrs (make-object(C TRANSACTIOM),

'name, '*TRANSACTION-2)

var TRANSACTION-I TRAISACIflN -
set-attrs (make-object ('TRANSACTION),

'name, '*TRANSACTION-1)

var USER-TYPE-i USER -
set-attrs (make-object ('USER),

'name, '*USER-TYPE-1)

var 1EW-TRANS :TRANSACTION -
set-attrs (make-object ('TRANSACTION),

'name, '*NEW-TRAUS)

var USER-NAM-i FLOW-NAME
set-attrs (make-object ('FLOW-NAM),

'name, 'eUSER-NMA-i)

XXX Define functions for behavior objects

function LISTING-BORRA3VED-BY-USERO )
let (return-symbol :symbol - undefined)

((if true
then

(enumerate element over
(BOOK I (BOOK) (BOOK in BOOKS)

(BOOK-CURRENT-BORROVER(BOOK) -TRANSACTION-BORROVER-NAM(TRANSACTION-13))) do
format(true, "-\\pp\\ ",element))

return-symbol

function DETEIUIINING-USER()
let (return-symbol :symbol -undefined)
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((if (TRANSACTION-TRANS-TYPE(TRAISACTIOI-2) -'LIST-BOOKS-BY-AUTHOR)

then
(assign-object ('*TRANSACTIOI-2, '*TRANSACTION- 10, 'TRANSACTION)

(if (TRANSACTIOI-TRANS-TYPE(TRANISCTIOI-2) - 'LIST-BOOKS-BY-SUBJECT)
then

(assign-object ( 'TRANSACTIOI-2, '*TRANSACTIOI-8, 'TRANSACTION)

(if (TRAESACTION-TRANS-TYPE (TRANSACTIOI-2) - 'LIST-NT-BOOKS)
then

(assign-object( '*TRANSACTION-2, '*TRAISACTION-13, 'TRANSACTION)

return-symbol

function REMOVIIG-USER()
let (return-symbol :symbol - undefined)

C(if (ex (USER)(USER in USERS) &t
(USER-USER-EM E(USER) - TRANSACTIOE-BORRIJWER-IAM(TRANSACTIOI- 11)) &t
(USER-BOOK-COUNT(USER) - O))
then

(USERS <- (setdif f(USERS, (USER I (USER) (USER in USERS) &t
(USER-USER-lANE (USER) - TRAUSACTION-BORROVER-NANE(TRANSACTIOI-1 1))}))))

return-symbol

function ADDING-USER()
let(return-symbol :symbol - undefined)

C(if -((ex (USER)(USER in USERS) &t
(USER-USER-NAME (USER) - TRANSACTION-BORROVER-IANE(TRANSACTIOI-9)))))
then

(USER-USER-NAIIE(UPDATED-NAME-3) <- TRANSACTION-BORROVER-NANE(TRANSACTION-9));
(USER-K IND(UPDATED-NANE-3) <- TRANSACTION-BORROWER-KINFD(TRANSACTION-9));
(USER-BOOK-COUIT(UPDATED-NANE-3) <- 0);

(USERS <- (USERS with copy-object(UPDATED-NANE-3)))

return-symbol

function LISTING-LAST-BORRIW1ER()
let (return-symbol :symbol - undefined)

C(if (ox (BOOK)(BOOK in BOOKS) &t
(BOOK-BOOK-Ifl(BOOK) - TRANSACTION-BDOO-ID(TRANSACTION-7))))
then

(enumerate element over
(BOOK I (BOOK) (BOOK in BOOKS) At

(BOOK-LAST-USEU(I50K) - TRANSACTION-BORROWER-SAME (TRANSACTION-?) ) }do
format(true, "-\\pp\\ ",element))

return-symbol
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function LISTING-BY-BORROWER()
let(return-symbol :symbol - undefined)

C(if (ex (USER)(USER in USERS) &
(USER-USER-NAME(USER) - TRANSACTION-BORROWER-NAME (TRANSACTION- 12))))
then

(enumerate element over
(BOOK I (BOOK) (BOOK in BOOKS) ft

(BOOK-CURRENT-BORRIJWER(BOOK) - TRANSACTION-BORROWER-NAME(TRANSAcTION-12)) f
(BOOK-STATUS (BOOK) - 'CHECKED-OUT) } do
foruat(true, "-\\pp\\ ",element))

return-symbol

function LISTING-BY--SUBJECT()
let (return-symbol :symbol =undefined)

((if true
then

(enumerate element over
(BOOK I (BOOK) (BOOK in BOOKS) f

(BOOK-SUBJECT (BOOK) - TRANSACTION-SUBJECT (TRANSACTION-8)) } do
I ormat(true, "-\\pp\\ ",element))

return-symbol

function LISTING-BY-AUTHOR() -
let(return-symbol :symbol -undefined)

C(if true
then

(enumerate element over
(BOOK I (BOOK) (BOOK in BOOKS) f

(BOOK-AUTHOR(BOOK) -TRANSACTION-AUTHOR(TRAIISACTION-10) )} do
format(true, "-\\pp\\ ",element))

return-symbol.

function RET!JRUING-BOOK() -
let(return-symbol :symbol aundefined)

((if (ex (BOOK)(BOOK in BOOKS) &t
(BOOK-BOOK-ID(BOOK) -TRANSACTION-BOOK-ID(TRANSACTION-6)) It
(BOOK-STATUS(BOOK) -'CHECKED-OUT)))
then
(UPDATED-BOOK-4 <- (arb({BOOK I (BOOK) (BOOK in BOOKS) &t
(BOOK-BOOK-ID(BOOK) - TRANSACTION-BOOK-ID(TRAUSACTION-6))}))));
(BOOK-STATUS(UPDATED-BOOK-4) <- 'AVAILABLE);
(BOOK-LAST-USER(UPDATED-BOOK-4) <- TRAUSACTIOE-BORROWER-IANE(TRAISACTION-6));
(BOOK-CUPRJENT-BORROVER(UPDATED-BOOK-4) <- "nonepl);
(UPDATED-NMA-2 <- (arb({USER I (USER) (USER in USERS) &t
(USER-USER-NAME (USER) - TRANSACTION-BORROWER-NANE(TRAUSACTION-6)) })));

(USER-BOOK-COUUT(UPDATED-NANE-2) <- (USER-BOOK-COUIT(UPDATED-NAME-2) - 1)

return-symbol
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function CHECKING-BOOK-OUT() -
let (return-symbol :symbol - undefined)

C(if (ex (BoOK)(BOOK in BOOKS) At
(BOOK-BOOK-ID (BOOK) =TRANSACTION-BOOK-ID (TRANSACTION-5)) f

(BOOK-STATUS(BOOK) -'AVAILABLE)))

and (ex (USER)(USER in USERS) &t
(USER-USER-NAME (USER) - TRANSACTION-BORROWER-NANE (TRANSACTION-5)) k
(USER-BOOK-COUNTCUSER) < 10))
then

(UPDATED-BOOK-3 <- (arb({BOOK I (BOOK) (BOOK in BOOKS) kt
(BOOK-BOOK-ID (BOOK) - TRANSACTION-BOOK-ID (TRANSACTION-5)) })));
(BOOK-STATUS (UPDATED-BOOK-3) <- 'CHECKED-OUT);
(BOOK-CURRENT-BORROWER(UPDATED-BOOK-3) <- TRANSACTION-BORROWER-NAIE (TRANSACTION-S));
(UPDATED-NAPIE-1 <- (arb({USER I (USER) (USER in USERS) &t
(USER-USER-NAME (USER) -TRANSACTION-BORROWER-NANE(TRANSACTION-5)) })));

(USER-BOOK-COUNT (UPDATED-NAME-i) <- (USER-BOOK-COUNT (1PDATED-NAME-i) + 1)

return-symbol

function RENOVING-BOOK()
let(retu~rn-symbol :symbol = undefined)

C(if (ex (BOOK)(BOOK in BOOKS) kt
(BOOK-BOOK-ID(BOOK) -TRANSACTION-BOOK-ID(TRANSACTION-4)) &t
(BOOK-STATUS(BOOK) ='AVAILABLE))

then
(BOOKS <- (setdiff(BOOKS, (BOOK I (BOOK) (BOOK in BOOKS) kt

(BOOK-BOOK-ID (BOOK) = TRANSACTION-BOOK-ID (TRkNSACTION-4) ) )))

return-symbol

function ADDING-BOOK() -
let(return-symbol :symbol - undefined)

C(if -((ex (BOOK)(BOOK in BOOKS) &t
(BOOK-BOOK-ID (BOOK) - TRANSACTION-BOOK-ID (TRANSACTION-3)))))
then

CBOOK-BOOK-ID(UPDATED-BOOK-i) <- TRANSACTION-BOOK-ID CTRANSACTION-3));
(BOOK-AUTHOR(UPDATED-BOOK- 1) <- TRANSACTION-kUTHOR(TRANSACTION-3));
(BOOK-TITLE(UPDATED-BOOK-1) <- TRANSACTION-TITLE(TRANSACTION-3));
(BOOK-SUBJECT (UPDATED-BOOK-i) <- TRANSACTION-SUBJECT (TRANSACTION-3));
(BOOK-LAST-USER(UPDATED-BOOK-i) <- "none");
(BOOK-CURRENT-BORROWER(UPDATED-BOOK- 1) <- "none");
(BOOK-STATUS(UPDATED-BOOK-1) <- 'AVAILABLE);

(BOOKS <- (BOOKS with copy-object(UPDATED-BOOK-i)))

return-symbol

function DETERNINING-STAFF()-
let(return-symbol :symbol -undefined)

((if (TRANSACTIOI-TRANS-TYPE(TRkNSACTION-1) - 'ADD-BOOK)
then

(assign-object( '*TRANSACTION-1, '*TRANSACTION-3, 'TRANSACTION)
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(if (TRANSACTION-TRANS--TYPE(TRAISACTION-i) - 'REND YE-BOOK)
then

(assign-object C'*TRANSACTION-1, '*TRANSACTION-4, 'TRANSACTION)

(if (TRANSACTION-TRANS-TYPE (TRANSACTION-i) = 'CHECK-OUT-BOOK)
then

(assign-object C'*TRANSACTION- 1, *TRANSACTION-5, 'TRANSACTION)

(it (TRANSACTION-TRANS-TYPE(TRANSACTION-i) - 'RETURN-BOOK)
then

(assign-object C'*TRANSACTION-i, '*TRANSACTION-6, 'TRANSACTION)

(if (TRANSACTION-TRANS-TYPE (TRANSACTION-i) - 'LIST-BOOKS-BY-AUTHOR)
then

(assign-object C'*TRANSACTION-i, '*TRANSACTION-1O, 'TRANSACTION)

(if (TRANSACTION-TRANS-TYPE (TRANSACTION-i) - 'LIST-BOOKS-BY-SUBJECT)
then

(assign-object C'*TRANSACTION- 1, *TRANSACTION-8, 'TRANSACTION)

(if (TRANSACTION-TRANS-TYPE (TRANSACTION-i) - 'LIST-BOOKS-BY-BORROWER)
then

(assign-object('*TRANSACTION-1, '*TRANSACTION-12, 'TRANSACTION)

(if (TRANSACTION-TRANS-TYPE (TRANSACTION-i) - 'LIST-LAST-BORROWER)
then

(assign-object ('*TRANSACTION- 1, *TRANSACTION-7, 'TRANSACTION)

(if (TRANSACTION-TRANS-TYPE (TRANSACTION-i1) - 'ADD-USER)
then

(assign-object C'*TRANSACTION-i, '*TRANSACTION-9, 'TRANSACTION)

(if (TRANSACTION-TRANS-TYPE (TRANSACTION-i) - 'REMOVE-USER)
then

(assign-object( '*TRANSACTION-i, '*TRANSACTION-ii,'TRANSACTION)
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return-symbol

function DETERMINE-TRANSACTION()
let (return-symbol :symbol - undefined)

((if (USER-KIND(USER-TYPE-1) - 'STAFF)
then

(assign-object( '*NEW-TRANS, '*TRANSACTION-1, 'TRANSACTION)

(TRANSACTION-USER-KIND (TRANSACTION-i) <- 'STAFF)

(if (USER-KIND (USER-TYPE-i) - 'ORDINARY)
then

(assign-object C'*NEV-TRANS, '*TRANiSACTION-2, 'TRANSACTION)

(TRANSACTION-USER-KIND(TRANSACTION-2) <- 'ORDINARY);
(TRANSACTION-BORROWER-NAIE (TRANSACTION-2) <- USER-USER-NAIIE(USER-TYPE-i))

return-symbol

function SETTING-USER-TYPEC) -
let (return-symbol :symbol - undefined)

((if (ex (USER)(USER in USERS) &t
(USER-USER-NAME (USER) - FLOW-NAME-N(USER-NAIIE-1)) &
(USER-KIND (USER) - 'STAFF)))
then

(USER-KIND(USER-TYPE-i) <- 'STAFF)

(if (ex (USER)(USER in USERS) &t
(USER-USER-NANE (USER) - FLOW-NAME-N(USER-NAME-i)) &t
(USER-KIND(USER) - 'ORDINARY))
then

(USER-KIND (USER-TYPE-i) <- 'ORDINARY);
(USER-USER-NAME(USER-TYPE-1) <- FLOW-NAJIE-N (USER-NANE- 1))

(if -((ex (USER)((USER in USERS) &t
(USER-USER-NANE(USER) - FLOW-NAMqE-N(USER-NAKE-MM))
then

(format (true, "~\\pp\\ ",NESSAGE-TEXT (ERROR-MESSAGE)))

return-symbol

XX% Define function for each state object

XX% Define function for each process object

function LIST-MY-BOOKS(dowhat :symbol) :return-values-
let (int-flov-set :seq(tuple(f low-type :symbol, flow-name symbol)) -

E<'TRANSACTION, 'eTRANSACTION-13>J,
ext-flow-set :seq(tuple(f low-type :symbol, flow-name symbol)) -

11,
intf lows-valid :boolean - false,
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check-flow :object - undefined,
return-tuple :return-values - <'invalid,[]>)

(if size(int-f low-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-f low-set do
check-f low <- f ind-object (f low. flow-type, f low. flow-nane)
(enumerate f low-attr over retuirn:-attribute-list(check-f low) do

if def ined? (retrieve-attribute (check-f low, flow-attr)) then
intf lows-valid <- true)));

(if dowhat - 'execute then
(if intflows-va].id then U7 if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow--type, flow.f low-name);
(if (ex (x (x in return-attribute-list(check-f low) kt

undefined?(retrieve-attribute(check-flow, x))) then
foruat(true, "Enter data for -k-", name(check-f low));

check-flow <- modify-object(check-flow)));
LISTING-BDRROWED-BY-USERO ;

(enumerate flow over concat(int-f low-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

store-attribute~check-f low, flow-attr, undefined)));
return-tuple <- <'valid, O>

else
format(true, "Process cannot be executed,

All in-flows are not defined.-%");
return-tuple <- <'invalid, [I>)

else
if intflows-valid then return-tuple <- <'valid, 0>
else return-tuple <- <'invalid,0>);

return-tuple

f unction DETERMINE-USER-TRANS (dowhat :symbol) :return-values
let (int-f low-set :seq(tuple(f low-type symbol, flow-name symbol)) -

[<c'TR.AISkCTIoN, '*TRkNSACTION-2>),
ext-flow-set :seq(tuple(f low-type symbol, flow-name symbol))

11
intf lows-valid :boolean - false,
check-flow :object - undefined,
return-tuple :return-values - <'invalid,[I>)

(if size (int-f low-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- find-object (flow. flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list (check-flow) do

if def ined? (retrieve-attribute (check-f low, flow-attr)) then
intflows-valid <- true)));

(if dowhat - 'execute then
(if intflows-valid then U if walid, check ext inflows

(enumerate flow over ext-flow-set do
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check-flow <- f ind-object Cf low. f low-type, I low.f low-name);
(if (ex Wx (x in return-attribute-list (check-flow) &

undefined?(retrieve-attribute(check-flow, x)))) then
format(true, "Enter data for -A-%", name~check-flow));

check-flow <- modify-object(check-f low));
DETERMINING-USEROC;

(enumerate f low over concat int-f low-set, ext-f low-set) do
check-flow <- f ind-obj ect (flow. I low-type, I low.f low-name);
(enumerate flow-attr over return-attribute-list (check-f low) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <'valid, [ 'LIST-N!F D!1DS, 'LIST-BOOIS-BY-AUTHDR,

'LIST-BOOKS-B'-SUBJEcT1>
else

I ormat(true, "Process cannot be executed.
All in-flows are not defined.3");

return-tuple <- <'invalid, 0]>)
else

if intf lows-valid then return-tuple <- <'valid,0O>
else return-tuple <- <'invalid,[]>);

return-tuple

function REMOVE-USER~dowhat :symbol) :return-values
let (int-f low-set :seq(tuple(flow-type :symbol, flow-name symbol)) -

[<'TRANSACTION, '*TRANSACTION-11>J,
ext-flow-set :seq~tuple~flow-type :symbol, flow-name symbol)) -

11)
intf lows-valid :boolean = false,
check-flow :object - undefined,
return-tuple :return-values -<'invalid, 0>)

(if size int-f low-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- find-object~flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list (check-flow) do

if def ined?(retrieve-attribute(check-f low, flov-attr)) then
intf lows-valid <- true)));

(if dowhat - 'execute then
(if intf lows-valid then UX if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object~flow.flow-type, flow.f low-name);
(if (ex Wx Cx in return-attribute-list(check-flow) &

undefined?(retrieve-attribute(check-flow, x))) then
format (true, "Enter data for -A-%", name (check-flow));

check-flow <- modify-object (check-flow)));
RENOVING-USERO;

(enumerate flow over concat(int-f low-set, ext-flow-set) do
check-flow <- find-object(flov.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

store-attribute(check-f low, flow-attr, undefined)));
return-tuple <- <'valid, O>

else
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format(true, "Process cannot be executed.

All in-flows are not defined.-%");

return-tuple <- <'invalid, O>)
else

if intflows-valid then return-tuple <- <'valid, 0 >
else return-tuple <- <'invalid,0>);

return-tuple

function ADD-USER(dowhat : symbol) : return-values -

let (int-flow-set : seq(tuple(flow-type symbol, flow-name symbol)) -
[<'TRANSACTION, '*TRANSACTION-9>],

ext-flow-set : seq(tuple(flow-type symbol, flow-name symbol)) -

[1
intflows-valid : boolean - false,
check-flow : object - undefined,
return-tuple : return-values - <'invalid, []>)

(if size(int-flou-set) - 0 then intlovs-valid <- true
else

(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined? (retrieve-attribute (check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = 'execute then
(if intflows-valid then Z if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object (flow. flow-type, flow. flow-name);

(if (ex (x) (x in return-attribute-list(check-flow) &
undef ined? (retrieve-attribute (check-f low, x)))) then

format (true, "Enter data for -"A-%, name(check-flow));
check-flow <- modify-object(check-flow)));

ADDING-USER O;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object (flow. flow-type, flow. flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <'valid, O]>

else
format(true, "Process cannot be executed.

All in-flows are not defined.-%");
return-tuple <- <'invalid, [O>)

else
if intflous-valid then return-tuple <- <'valid, 0 >
else return-tuple <- <'invalid,0>);

return-tuple

function LIST-LAST-BORROWER(dowhat : symbol) : return-values-
let (nt-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) -

[<'TRANSACTION, '*TRANSACTION-7>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) -

E30,

307



intflows-valid : boolean - false,
check-flow : object - undefined,
return-tuple : return-values - <'invalid, []>)

(if size (int-flow-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-flow-set do
check-flow <- find-object (flow. flow-type, flow. flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined? (retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = 'execute then
(if intflows-valid then UZ if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object (flow.flow-type, flow. flow-name);
(if (ex Wx) (x in return-attribute-list(check-flow) *

undefined? (retrieve-attribute (check-flow, x)))) then
format(true, "Enter data for -k-%", name(check-flow));

check-flow <- modify-object(check-flow)));
LISTING-LAST-BORROWERO ;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object (flow.flow-type, flow. flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <'valid, [I>

else
foruat(true, "Process cannot be executed.

All in-flows are not defined.-T");
return-tuple <- <'invalid, []>)

else
if intflows-valid then return-tuple <- <'valid,0>
else return-tuple <- <'invalid,O>);

return-tuple

function LIST-BOOKS-BY-BORROWER(dowhat : symbol) : return-values-
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name symbol)) -

[<'TRANSACTION, '*TRANSACTION-12>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name symbol)) -

[]J
intflows-valid : boolean = false,
check-flow : object - undefined,
return-tuple : return-values - <'invalid, []>)

(if size (int-flow-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-flow-set do
check-flow <- find-object (flow. flow-type, flow. flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined? (retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat - 'execute then

(if intflows-valid then •% if valid, check ext inflows
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(enumerate flow over ext-flow-set do
check-f low <- f ind-obj ect (f low. f low-type, f low. f low-name);
(if (ex (x Ux in return-attribute-list(check-flow) I

undefined? (retrieve-attribute (check-flow, x)))) then
format (true, "Enter data for -A-%", name (check-flow));

check-flow <- modify-object (check-flow)));
LISTING-BY-BORROWERO;

(enumerate flow over concat (int-f low-set, ext-f low-set) do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-f low, flow-attr, undefined)));
return-tuple <- <'valid, Ol>

else
format(true, "Process cannot be executed.

All in-flows are not defined.-%");
return-tuple <- <'invalid, [I>)

else
if intf lows-valid then return-tuple <- <'valid. 0>
else return-tuple <- <'invalid,0>);

return-tuple

function LIST-BOOKS-BY-SUBJECT(dowhat :symbol) :return-values
let (int-f low-set :seq(tuple(f low-type :symbol, flow-name :symbol)) -

(<'TRANSACTION, '*TRANSACTION-8>),
ext-flow-set :seq(tuple(f low-type :symbol, flow-name :symbol))

[],
intf lows-valid :boolean = false,
check-f low :object - undefined,
return-tuple :return-values - <'invalid, 0>)

(if size (int-f low-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

if def ined?(retrieve-attribute(check-f low, flow-attr)) then
intflows-valid <- true)));

(if dowhat - 'execute then
(if intf lows-valid then Y.% if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex (x Ux in return-attribute-list(check-flow) &t

undefined?(retrieve-attribute(cbeck-flow, x)))) then
format (true, "Enter data for -A-%", name (check-flow));

check-flow <- modify-object(check-flow)));
LISTING-BY-SUBJECT 0;

(enumerate flow over concat~int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enuL~erate flow-attr over return-attribute-list(check-f low) do

store-attribute(check-f low, flow-attr, undefined)));
return-tuple <- <'valid, 0>

else
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format(true, "Process cannot be executed.

All in-flows are not defined.-%");
return-tuple <- <'invalid, [I>)

else
if intflows-valid then return-tuple <- <'valid,f[>
else return-tuple <- <'invalid,[>);

return-tuple

function LIST-BOOKS-BY-AUTHOR(dowhat : symbol) : return-values-
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name symbol)) -

[<'TRANSACTION, '*TRANSACTION-1O>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name symbol)) -

[3,
intflows-valid : boolean - false,
check-flow : object - undefined,
return-tuple : return-values = <'invalid,O>)

(if size (int-f low-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-flow-set do
check-flow <- find-object (flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat - 'execute then
(if intflows-valid then U if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex Wx) (x in return-attribute-list(check-flow) &

undefined?(retrieve-attribute(check-flow, x)))) then
format(true, "Enter data for -A-%", name(check-flow));

check-flow <- modify-object (check-flow)));
LISTING-BY-AUTHORO ;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, f low-attr, undefined)));
return-tuple <- <'valid, O>

else
format(true, "Process cannot be executed.

All in-flows are not defined.-%");
return-tuple <- <'invalid, [0>)

else
if intflows-valid then return-tuple <- ('valid, [>
else return-tuple <- <'invalid,fl>);

return-tuple

function RETURN-BOOK(dowhat : symbol) : return-values

let (int-flow-set : seq(tuple(flow-type symbol, flow-name symbol)) -
[<'TRANSACTION, '*TRANSACTION-6>],

ext-flow-set : seq(tuple(flow-type symbol, flow-name symbol)) -
[13,
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intflows-valid : boolean - false,
check-flow : object - undefined,

return-tuple : return-values - <'invalid, []>)

(if size(int-flow-set) - 0 then intflows-valid <- true

else
(enumerate flow over int-flow-set do

check-flow <- find-object (flow. flow-type, flow. flow-name);

(enumerate flow-attr over return-attribute-list(check-flow) do
if defined? (retrieve-attribute(check-flow, flow-attr)) then

intflows-valid <- true)));

(if dowhat - 'execute then
(if intflows-valid then %% if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);

(if (ex Wx) (x in return-attribute-list(check-flow) &
undef ined? (retrieve-attribute (check-flow, x)))) then

format(true, "Enter data for -A-%", name(check-flow));

check-flow <- modify-object(check-flow)));
RETURNING-BOOK 0;

(enumerate flow over concat(int-flow-set, ext-flow-set) do

check-flow <- find-object (flow.flow-type, flow. flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));

return-tuple <- <'valid, [I>

else
format(true, "Process cannot be executed.

All in-flows are not defined.-%");

return-tuple <- <'invalid, O>)
else

if intflows-valid then return-tuple <- <'valid,D>
else return-tuple <- 4'invalid,0]>);

return-tuple

function CHECK-OUT-BOOK(dowhat : symbol) return-values-
let (int-flow-set : seq(tuple(flow-type symbol, flow-name symbol)) -

[<'TRANSACTION, '*TRANSACTION-5>],
ext-flow-set : seq(tuple(flow-type symbol, flow-name symbol)) -

11,
intflows-valid : boolean - false,
check-flow : object - undefined,
return-tuple : return-values = <'invalid, [>)

(if size(int-flow-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined? (retrieve-attribute (check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat - 'execute then
(if intflows-valid then U if valid, check ext inflows
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(enumerate flow over ext-flow-set do
check-f low <- f ind-object (f low. f low-type, f low. flow-name);
(if (ex W() x in return-attribute-list (check-flow) &

undefined?(retrieve-attribute(check-flow, x)))) then
format true, "Enter data for -A-%", name (check-flow));

check-flow <- modify-object (check-flow)));
CRECKING-BOOK-OUTO;

(enumerate flow over concat(int-f low-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-f low, flow-attr, undefined)));
return-tuple <- <'valid, [D>

else
format(true, "Process cannot be executed.

All in-flows are not defined.-%");
return-tuple <- <'invalid, >

else
if intf lows-valid then return-tuple <- <'valid,0>
else return-tuple <- <'invalid,fl>);

return-tuple

function REMOVE-BOOK(dowhat :symbol) :return-values
let (int-f low-set :seq(tuple(flow-type symbol, flow-name symbol)) =

(<'TRANSACTION, '*TRANSACTION-4>),
ext-flow-set :seq(tuple(flow-type symbol, flow-name symbol)) -

11,
intf lows-valid :boolean - false,
check-flow :object - undefined,
return-tuple :return-values - <'invalid, [>)

(if size(int-f low-set) - 0 then intflows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

if def ined? (retrieve-attribute (check-f low, flow-attr)) then
intf lows-valid <- true)));

(if dowhat - 'execute then
(if intflows-valid then U% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.f low-type, flow.f low-name);
(if (ex Wx (x in return-attribute-list(check-flow) k

undefined? (retrieve-attribute (check-f low, x)))) then
format (true, "Enter data for -A-%". name (check-flow));

check-flow <- modify-object(check-flow)));
RENOVIIG-BOOKO;

(enumerate flow over concat(int-f low-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

store-attribute(check-f low, flow-attr, undefined)));
return-tuple <- <'valid, O>

else
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format(true, "Process cannot be executed.
All in-flows are not defined.-%"');

return-tuple <- <'invalid, O>)
else

if intf lows-valid then return-tuple <- <'Ivalid,0 >
else return-tuple <- <'invalid, 0>);

return-tuple

function ADD-BOOK(dowhat symbol) :return-values
let Cint-f low-set :seq(tuple (f low-type :symbol, f low-name :symbol)) -

(<'R G ,'TRANSACTIOE,*INATO-3>],
ext-f low-set :seq(tuple(f low-type :symbol, flow-name :symbol)) -

11.
intf lows-valid :boolean -false,
check-flow :object - undefined,
return-tuple :return-values - <'invalid,0f>)

(if size Unt-f low-set) - 0 then intf lows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

if defined? (retrieve-attribute (check-flow, flow-attr)) then
intf lows-valid <- true));

(if dowhat - 'execute then
(if intf lows-valid then %% if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(if (ox (x (x in return-attribute-list(check-flow) A

undef ined? (retrieve-attribute (check-f low, x))) then
format(true, "Enter data for -A-V, name(check-f low));

check-flow <- modify-object(check-flow)));
ADDING-BOOK 0;

(enumerate flow over concat (it-f low-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute--list (check-flow) do

store-attribute(check-f low, flow-attr, undefined)));
return-tuple <- <'valid, []>

else
format(true, "Process cannot be executed.

All in-flows are not defined.-%");
return-tuple <- <'invalid, [I>)

else
if intf lows-valid then return-tuple <- <'valid, 0 >
else return-tuple <- <'invalid,0 >);

return-tuple

function DETERPIINE-STAFF-TRANS(dowhat :symbol) :return-values-
let (mt-f low-set :seq(tuple(f low-type symbol, flow-name symbol)) -

(<'TRANSACTION, '*TRAISACTION-i>),
ext-flow-set :seq(tuple(flow-type symbol, flow-name symbol)) -

1J,
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intl lows-valid :boolean - false,
check-flow :object - undefined,
return-tuple :return-values - C 'invalid, D>)

(if size(int-f low-set) - 0 then intl lows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- find-object(flou.flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute--list(check-f low) do

if defined?(retrieve-attribute(check-f low, flow-attr)) then
intl lows-valid <- true)));

(if dowhat - 'execute then
(if intl lows-valid then XX if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.f low-name);

(if (ex Wx (x in return-attribute-list(check-flow) &
undef ined? (retrieve-attribute (check-f low, x)))) then

format(true, "Enter data for -A-%", name(check-f low));
check-flow <- modify-object(check-flow)));

DETERNINING-STkFFO;

(enumerate flow over concat(int-f low-set, ext-flow-set) do
check-flow <- f ind-obj ect (flow. flow-type, I low.f low-name);

(enumerate I low-attr over return-attribute-list(check-flow) do
store-attribute(check-f low, I low-attr, undefined)));

return-tuple <- V valid, [ 'REMOVE-USER, 'ADD-USER.
'LIST-BOOKS-BY-BORROWER, 'LIST-BOOKS-BY-AUTHOR,
'LIST-BOOKS-BY-SUBJECT, 'LIST-LAST-BORROWER,
'RETURN-BOOK, 'CHECK-OUT-BOOK, 'REMOVE-BOOK, 'ADD-BOOK)>

else
I ormat(true, "Process cannot be executed.

All in-flows are not defined.3");
return-tuple <- <'invalid, [I>)

else
if intflows-valid then return-tuple <- <'valid, 0>
else return-tuple <- <'invalid, 0>);

return-tuple

function DETERMIUE-TRANS-TYPE(dowhat :symbol) :return-values
let (int-f low-set :seq(tuple(f low-type :symbol, flow-name :symbol)) -

(<'USER, 'CUSER-TYPE- 1>),
ext-flow-set :seq(tuple(f low-type :symbol, flow-name :symbol)) -

(<'TRANSACTION, 'sNEW-TRAIS>J,
intl lows-valid :boolean - false,
check-flow :object - undefined,
return-tuple :return-values - <'invalid, 0>)

(if size (int-f low-set) - 0 then intf lows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- f ind-object(f low. flow-type, flow.f low-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

if def ined?(retrieve-attribute(check-f low, llow-attr)) then
intflows-valid <- true)));
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(if dowhat - 'execute then
(it intl lows-valid then UX if valid, check ext inflows

(enumerate flow over ext-flow-set do
check-flow <- find-objectCf low.f low-type, flow.! low-name);
(if Cex Wx Ux in return-attribute-list(check-f low) &

undef ined?'(retrieve-attribute (check-flow, x)))) then
format(true, "Enter data for -A-%", name(check-f low));

check-flow <- modify-object (check-flow)));
DETERMINE-TRANSACTION(0;

(enumerate flow over concat~int-f low-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow. f low-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-f low, flow-attr, undefined)));
return-tuple <- <'valid, E 'DETEBMIIE-USER-TRANS, 'DETERNINE-STAFF-TRANS]>

else
format(true, "Process cannot be executed.

All in-f lows are not defined.-%");
return-tuple <- <'invalid, [I>)

else
if intf lows-valid then return-tuple <- V'valid,
else return-tuple <- <'invalid,O >);

return-tuple

function SET-USER-TYPE(dowhat :symbol) return-values
let Cint-! low-set seq(tuple(f low-type symbol, flow-name symbol)) -

ext-flow-set seq~tuple(f low-type symbol, flow-name symbol)) -
[<'FLOW-NAME, '*USER-NAqE- 1>),

intf lows-valid :boolean - false,
check-flow :object - undefined,
return-tuple :return-values - <'invalid,Ij>)

(if size (int-! low-set) - 0 then intf lows-valid <- true
else

(enumerate flow over int-f low-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-f low) do

if defined? (retrieve-attribute (check-f low, flow-attr)) then
intflows-valid <- true)));

(if dowhat - 'execute then
(if intflows-valid then UX if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-f lou <- find-object(flow .1low-type, I low.! low-name);
(if Cex CW (x in return-attribute-list(check-f low) kt

undef ined? (retrieve-attribute (check-flow, x)))) then
format~true, "Enter data for -A-%", name(check-f low));

check-flow <- modify-object (check-flow)));
SETTING-USER-TYPE 0;

(enumerate flow over concat(int-f low-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.!f low-name);
(enumerate flow-attr over return-attribute-list (check-flow) do
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store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <'valid, [ 'DETERMINE-TRANS-TYPE]>

else
format(true, "Process cannot be executed.

All in-flows are not defined.-");
return-tuple <- <'invalid, []>)

else
if intf lows-valid then return-tuple <- <'valid, 0 >
else return-tuple <- <'invalid,O>);

return-tuple

function simO =
let (pfunction : return-values = undefined,

done boolean - false,
reply integer = undefined,
test return-values - undefined,
valid-procs seq(symbol) = [11,
init-procs : seq(synbol) = ['SET-USER-TYPE])

reply <- Make-Menu(init-procs,
"Choose one of these processes to initialize the simulation:");

(if Reply <= size(init-procs) then
pfunction <- funcall(init-procs(reply), 'execute);
while -done do

valid-procs <- C];
(if pfunction.validity = 'valid then

(if size(pfunction.next-procs) > 0 then
(enumerate proc over pfunction.next-procs do

test <- funcall(proc, 'check);
(if test.validity = 'valid then

valid-procs <- append(valid-procs, proc)));
reply <- Make-Menu(valid-procs,

"Select a process that may potentially execute at this point:");
(if Reply <= size(valid-procs) then

pfunction <- funcall(valid-procs(reply), 'execute)
elseif Reply - size(valid-procs)+2 then

done <- true) U selects quit
else pfunction.next-procs <- init-procs)

else U not valid process
done <- true))

XXX Defines function for erasing all objects in Refine's database.
XXX Execute this function before you reload this file if you do not use
%%% the convert process.

function clear-objectsO =
(enumerate obj over [obj I (obj : LIBRARY) LIBRARY(obj)] do

erase-object (obj))
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Appendix F. OML User's Manual

F.1 Synopsis

This guide describes how to generate an executable specification from an OML specification.

OML was specifically designed to directly and intuitively model all components of ERMs, DFMs,

and STMs in a formal language syntax. OML's formal language representation enables OML

specifications to be automatically translated into an executable form.

F.2 Required Software

The following software is required to support the translation of an OML specification into an

executable REFINE specification. The order in which the software is compiled and loaded into the

REFINE environment is important and should be performed in the following order:

Software Function

DIALECT REFINE'S language manipulation tool

oml-dm.re OML's domain model

oml-gm.re OML's grammar

lisp-utilities.lisp Support functions written in Lisp

read-utilities.re I/O support functions

obj-utilities.re Object manipulation support functions

modify-obj.re Object modification support functions

r-lib.re Runtime library functions

trans-oml.re Translates OML spec into an executable

Table 6. Software Required to Support OML's Translation and Execution

We have developed a lisp function to automatically compile and load these files into REFINE.

If desired, this function can be used by loading the file "init.lisp" and typing "(init)" at the REFINE
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command line. All of the above mentioned files are located on the hawkeye server at the Air Force

Institute of Technology.

F.3 Assumptions

The OML parsing and translation software was developed using the REFINE environment.

The REFINE environment is designed to execute on a UNIX workstation and uses GNU Emacs for

its user interface. Therefore, it is assumed that both REFINE and Emacs are available. Further it

is assumed that the user has some familiarity with REFINE and Emacs.

The OML specification must be developed prior to using the translation tool. The description

of OML provided in Chapter IV and Appendix A, as well as the two sample problems provided in

Appendices D and E, provide sufficient guidance for developing an OML specification.

The user's problem must be informally modeled in terms of ERMs, STMs, and DFMs prior

to developing the OML specification. Also, once the executable specification has been generated,

these diagrams should be available for reference while testing the executable specification.

F.4 Generating an Executable Specification

Once the OML specification has been developed, the steps listed in Table 7 should be taken

to convert it into an executable specification.

F.5 Using the Executable OML Specification

By running the executable specification, the user will be able to validate that his informal

specification correctly specifies his requirements. Inconsistencies between requirements in the infor-

mal specification will result in an error, and a supporting error message will be displayed. Incorrect

requirements will result in the executable not behaving in the manner intended by the user. Cor-

rections to these errors should be made to the OML specification (either manually or through the
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Next Step Action Result

Initialize REPINE Type emacs & (in cmdtool Emacs window will appear,

(REFINE is initialized from window),

the Emacs editor) Type Esc X run-refine Emacs window will split and

REFINE will initialize on the

right

Load the translation software Type (Load"init.lisp"),

Type (init) Loads Dialect,

Loads translation software,

Loads runtime library func-

tions,

Loads lisp functions

Convert the OML specifica- Type (convert "<your OML Parses the OML spec into an

tion into an executable RE- file name>") AST,

FINE specification Translates the info in the

AST into a REFINE exe-

cutable specification,

Compiles and Loads the Exe-

cutable specification,

Tells the user to type (sim) to

begin the simulation

Table 7. How to Generate an Executable Specification

front end tool) and a new executable specification should be produced by converting the modified

OML specification. The REFINE executable specification is not intended to be modified.

If your executable specification terminates because of an error in the specification, an error

message will be displayed on the screen. Take note of the state or process that was executing just

prior to the error. Use the information provided in the error message, your knowledge of the last

process or state to execute, and your informal specification to locate the error in your specification.

Also note, if the executable specification prompts the user to enter character data (letters

and words) into the system, future reference to these characters will be case sensitive.

Once an executable specification has been created, it can be executed at any time. The user

does not have to execute it immediately. If the user wants to log out of his account and then execute
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it at a later time, the executable does not have to be recreated. Prior to executing a specification,

all of the software mentioned in Section F.2 must be loaded first except oml-dm.re, oml-gm.re, and

trans-oml.re. These files do not have to be loaded unless the user intends to convert an OML

specification into an executable specification.

F.6 Diagnosing Errors

This section is intended to help the OML user correct the types of errors he is likely to

encounter. Errors in the OML specification can be revealed at three different stages: during parse,

during compilation of the executable, or during execution. These error messages were obtained by

converting the file "test.spec". "Test.spec" has the original errors commented out and the corrected

statements right below the error.

F.6.1 Errors detected while parsing. Syntax errors in the OML specification will be de-

tected during this stage of the translation. These errors will be caught immediately by the OML

compiler and REFINE's interactive mode will direct you to the exact location where the syntax error

occurred. The user should refer to Appendix A for a complete description of OML's syntax.

F.6.2 Errors detected during compilation. The errors detected during the compilation

of the executable specification are the result of semantic errors in the OML specification. The

current translation software does not perform semantic checking. It assumes the user has written

a semantically correct OML specification. Thus, either semantic checking should be added to the

translation software or else semantic checking should be performed by the elicitation tool (not yet

built).

These errors are revealed after the OML specification is converted into an executable spec-

ification. However, when the executable specification is compiled, REFINE may detect an error

causing an error message to be displayed to the screen.
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The following are examples:

Type checking.., succeeded ......
REFINE compiling MOTOR-Ol...

Type checking...
Warning: I local type conflict detected:

At program part: IGNITION = 'OFF
Tried to match type: OBJECT

with type: symbol

MOTOR-ON did not compile correctly.

The above error resulted from an improper reference to the status attribute of the IGNITION

entity. The correct semantic should be IGNITION.STATUS = 'OFF. Note: REFINE notifies the

user that the error occurred while compiling the MOTOR-ON state function.

Warning: IDLE did not link correctly. The unlinked reference is:
FIVE-MINUTE-TIMER

REFINE compiling IDLE...

Type checking...
Warning: Unknown variable FIVE-MINUTE-TIMER in

FIVE-MINUTE-TIMER. STATUS

IDLE did not compile correctly.scavenging... done

The above error resulted from using an incorrect variable name. REFINE notified the user

that the error occurred in the IDLE state. In this case, FIVE-MINUTE-TIMER is not the correct

name of an entity object. The correct name should have been FIVE-MIN-TIMER.

These are two examples of errors found during compilation of the executable spec. The file

"test.spec" shows the original error and the corrected form.
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F.6.3 Errors revealed during execution. These errors are detected by executing the spec-

ification. These errors reveal inconsistencies, incorrectness, or incompleteness in the user's OML

specification.

(sim)

The current state of the system is OFF
VALID STATE SPACE

"Events that can occur:"

1 ) SWITCH-TURNED-ON
2 ) Continue
3 ) Quit
I
Error: attempt to call 'RE:*UNDEFINED*' which is an undefined function.

Restart actions (select using :continue):
0: prompt for a new function, instead of 'RE:*UIDEFINED*'.

Here, the execution terminated immediately. When this type of error message occurs

(RE:*UNDEFINED*), it generally means that information is missing from the specification. In

this case, the system crashed because the OML specification did not have entries in the Relation

Table to associate an external event with its behavior. This type of error should eventually be

caught by the semantic checking prior to the specification's execution.
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(aim)
The current st'te of the system is OFF

VALID STATE SPACE
"Events that can occur:"
I ) SWITCH-TURNED-ON
2 ) Continue
3 ) Quit
1
The current state of the system is IDLE

INVALID STATE SPACE
The system's current state space conflicts with
the state space required to be in the above mentioned state. Here are the
current attribute values in the system. Compare them with the required values
specified in your specification to find the inconsistencies.

*WATER.THERMOSTAT-TEMP : 60
*AIR. THERMOSTAT-TEMP : 60
*FIVE-SEC-TIMER.TIMER-STATUS : OFF
*FIVE-MIN-TIMER.TIMER-STATUS : OFF
*OIL-VALVE.VALVE-STATUS : CLOSED
*WATER-VALVE. VALVE-STATUS : CLOSED
*COMBUSTION-SENSOR.SENSOR-STATUS : SAFE
*FUEL-SENSOR. SENSOR-STATUS : SAFE
*CONTROLLER. CONTROLLER-ENTITY-TR 70
*CONTROLLER. CONTROLLER-ENTITY-TW : 180
*IGNITION.IGNITION-ENTITY-STATUS : OFF
*MOTOR. MOTOR-ENTITY-STATUS OFF
*MOTOR. MOTOR-EXTITY-SPEED INADEQUATE
*MASTER-SWITCH.MASTER-SWITCH-ENTITY-STATUS : ON

These kinds of errors are a result of inconsistent requirements in the specification. In this case,

quite a bit of guidance is given to the user. We are told that the error occurred while in the IDLE

state. The problem occurred because the system's current air temperature was 60 degrees and the

controller.tr temperature was 70, but in order to enter the IDLE state, IDLE's state space required

the air temperature to be greater than controller.tr-2. Thus, the system has a contradiction. As it

turned out, this was an unnecessary requirement and it was removed from the specification.
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F. 7 Test Specification

%%% File-lame : test.spec (Home-Heater Specification)

%.% Authors Capt Mary Boom, Capt Brad Mallare

%%% Purpose This home heater specification shows the stepwize
%%% corrections made as the translated OML specification was verified
%%%. through execution of the specification. VSV.

%%% Unified Abstract Model Components :7x
%%% Entities, Relationships, States, Events, Behaviors, and
%.%% Relation-Tables %.V.

specification test-heater

%%%%%. ENTITIES

SENSOR class-of entity
type : external

parts
status : symbol range {safe, unsafe}

FUEL-SENSOR instance-of SENSOR
values
status : safe

COMBUSTION-SENSOR instance-of SENSOR
values
status : safe

VALVE class-of entity
type : external

parts
status : symbol range {open, closed}

WATER-VALVE instance-of VALVE
values
status : closed

OIL-VALVE instance-of VALVE
values
status : closed

TIMER class-of entity
type : external

parts
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status : symbol range {off, on}

FIVE-MIN-TIMER instance-of TIMER
values
status : off

FIVE-SEC-TIMER instance-of TIMER
values
status : off

THERMOSTAT class-of entity
type external

parts
temp integer range (0 .. 280}

AIR instance-of THERMOSTAT
values
temp : 60

WATER instance-of THERMOSTAT
values
temp : 60

MASTER-SWITCH instance-of entity
type : external

parts
status : symbol range {on, off} init-val off

MOTOR instance-of entity
type : external

parts
status symbol range {on, off} init-val off;
speed symbol range {adequate, inadequate} init-val inadequate

IGNITION instance-of entity
type : external

parts
status : symbol range {on, off} init-val off

CONTROLLER instance-of entity
type : external

parts
tr integer range {32 130} init-val 70; X.7 preset air temp
t :integer range {32 280} init-val 180 U7 preset water temp

%%.%%.%/. RELATIONSHIPS %%%%.%

ACTIVATES instance-of relationship
type : general
cardinality : 1-1
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MONITORS instance-of relationship
type : general
cardinality - 1-I

CONTROLS-FLOW instance-of relationship
type : general
cardinality : 1-I

SWITCHES instance-of relationship
type : general
cardinality : 1-1

SIGNALS instance-of relationship
type : general
cardinality : 1-1

ICO instance-of relationship
type : ICO
cardinality : I-1

MY.XY STATES %%%%%%

OFF instance-of state
state-space : master-switch.status = off

IDLE instance-of state
state-space : master-switch.status = on;

Sair.temp > controller.tr - 2; % unnecessary requirement
Sfive-minute-timer.status = off; % incorrect name

five-min-timer.status = off;
five-sec-timer.status = off

MOTOR-ON instance-of state
state-space : master-switch.status = on;

motor.status = on;
motor.speed inadequate;
air.temp < controller.tr - 2;

% ignition = off; % incorrect attribute reference
ignition.status = off;
oil-valve.status = closed

WATER-HEATING instance-of state
state-space : master-switch.status = on;

air.temp < controller.tr + 2;
motor.status = on;
motor.speed adequate;
water.temp < controller.tw;
fuel-sensor.status a safe;
combustion-sensor.status = safe;
water-valve.status = closed;
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oil-valve.status = open

RUNNING instance-of state
state-space :master-switch.status = on;

air.temp < controller.tr + 2;
motor.status =on;

motor.speed =adequate;

vater.temp > controller.tw;
fuel-sensor.status = safe;
combustion-sensor.status =safe;
water-valve.status = open;
oil-valve.stattis = open

SHUTDOWN instance-of state
state-space uzmaster-switch.status = on;

air.temp >= controller.tr + 2;
motor.status = on;
fuel-sensor.status = safe;
combustion-sensor.status =safe;
water-valve.statiis = open;
oil-valve.status =closed;
fjve-sec-timer.status =on

WAIT5MINUTES instance-of state
state-space :master-switch.status =on;

motor.status =off;
fuel-sensor.status = safe;
combustion-sensor.status =safe;
water-valve.status = closed;
oil-valve.status = closed;
ignition.status = off;
five-sec-timer.status = off;
five-min-timer.status = on

HOLD instance-of state
state-space :ignition.status = off;

five-sec-timer.status = off;
five-min-tizner.status = off;
motor.status = off;
water-valve.status =closed;
oil-valve.status = closed;

%. combustion-sensor.status =unsafe; % master switch off k safe
%fuel-sensor.status = unsafe %sensors also gets to here

%%%%% EVENTS Y%%%%%%

V.V. Internal Events

NASTER-SWITCH-Ol instance-of event
type: internal
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MOTOR-TURNED-ON instance-of event
type: internal

OIL-IGNITED instance-of event
type: internal

WATER-VALVE-OPENED instance-of event
type: internal

DONE-HEATING-WATER instance-of event
type: internal

MOTOR-TURNED-OFF instance-of event
type: internal

DONE-WAITING instance-of event
type: internal

MASTER-SWITCH-OFF instance-of event
type: internal

ABNORMAL-FUEL instance-of event
type: internal

A!OQRMAL-COMBUSTIO1 instance-of event
type: internal

SYSTEM-IS-RESET instance-of event
type: internal

SYSTEM-IS-OFF instance-of event
type: internal

%% External Events

SWITCH-TURNED-ON instance-of event
type: external

AIR-TEMP-BELOW-PRESET instance-of event
type: external

ADEQUATE-MOTOR-SPEED instance-of event
type: external

WATER-TEMP-ABOVE-PRESET instance-of event
type: external

AIR-TEMP-ABOVE-PRESET instance-of event
type: external
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FIVE-SEC-TIMER-EXPIRES instance-of event

type: external

FIVE-MIN-TIMER-EXPIRES instance-of event
type: external

SWITCH-TURNED-OFF instance-of event
type: external

UNSAFE-COMBUSTION-SENSOR instance-of event
type: external

UNSAFE-FUEL-SENSOR instance-of event
type: external

RESET-SYSTEM instance-of event
type: external

SYSTEM-TURNED-OFF instance-of event
type: external

%%%%%% BEHAVIORS %%%%%

FURNACE-OFF instance-of behavior
master-switch.status, = on

event, MASTER-SWITCH-ON

FURNACE-IDLE instance-of behavior

air.temp, < controller.tr - 2, dont-care;
master-switch.status, = on, = off

motor.status, on, off
event, MOTOR-TURNED-ON, MASTER-SWITCH-OFF

FURNACE-MOTOR-ON instance-of behavior

motor.speed, dont-care, = adequate;
master-switch.status, = off, = on

ignition.status, off, on;
oil-valve.status, closed, open;
motor.status, off, on
event, MASTER-SWITCH-OFF, OIL-IGNITED
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FURNACE-WATER-HEATING instance-of behavior

Water.temp, > controller.tw, dont-care, dont-care, dont-care;
master-switch.status, =on, = off, dont-care, dont-care;
fuel-sensor.status, = safe, dont-care, = u~nsafe, dont-care;
combustion-sensor.status, = safe, dont-care, dont-care, =unsafe

water-valve.status, open, closed, closed, closed;
oil-valve.status, open, closed, closed, closed;
five-sec-timer.status, off, on, on, on
event, WATER.-VALVE-OPENED, MASTER-SWITCH-OFF, ABNORMAL-FUEL,

ABNORMAL-COMBUSTION

FURNACE-RUNNING instance-of behavior

air.temp, >= controller.tr + 2, dont-care, dont-care, dont-care;
fuel-sensor.status, = safe, = unsafe, dont-care, dont-care;
combustion-sensor.status, = safe, dont-care, =unsafe, dont-care;
master-switch.status, = on, =on, =on, =on

oil-valve.status, closed, closed, closed, closed;
five-sec-timer.statue, on, on, on, on
event, DONE-HEATING-WATER, ABNORMAL-FUEL, ABNORMAL-COMBUSTION,

MASTER-SWITCH-OFF

FURNACE-SHUTTING-DOWN instance-of behavior

five-sec-timer.status, = off, = off, =off;

fuel-sensor.status, = safe, = unsafe, dont-care;
cojnbustion-sensor.status, = safe, dont-care, =unsafe

motor.status, off, off, off;
water-valve.status, closed, closed, closed;
five-min-tiiuer.status, on, off, off;
ignition.status, off, of f, of f
event, FIVE-SEC-TIMER-EXPIRES, ABNORMAL-SHUTDOWN, ABNORMAL-SHUTDOWN

FURNACE-WAITING instance-of behavior

five-min-timer.status, =of f

event, FIVE-KIN-TIMER-EXPIRES
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FURNACE-ABNORMAL instance-of behavior

fuel-sensor.status, = safe, = safe;
combustion-sensor.status, = safe, = safe;
master-switch.status, = off, = on

event, SYSTEM-IS-OFF, SYSTEM-IS-RESET

%%%%%%%%%% BEHAVIORS - EVENT ACTIONS % %

SWITCH-TURNED-ON-BEH instance-of behavior
true

master-switch.status := on
event none

AIR-TEMP-BELOW-PRESET-BEH instance-of behavior
true

air.temp := controller.tr - 3
event none

ADEQUATE-MOTOR-SPEED-BEH instance-of behavior
true

motor.speed := adequate
event none

WATER-TEMP-ABOVE-PRESET-BEH instance-of behavior
true

water.temp := controller.tv + I
event none

AIR-TEMP-ABOVE-PRESET-BEH instance-of behavior
true

air.temp := controller.tr + 3
event none

FIVE-SEC-TIMER-EXPIRES-BEH instance-of behavior
true

five-sec-timer.status := off
event none

FIVE-MIN-TIMER-EXPIRES-BEH instance-of behavior
true
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five-min-timer.status := off
event none

SWITCH-TURNED-OFF-BEH instance-of behavior
true

master-switch.status := off
event none

UNSAFE-COMBUSTION-SENSOR-BEH instance-of behavior
true

combustion-sensor.status := unsafe
event none

UNSAFE-FUEL-SENSOR-BEH instance-of behavior
true

fuel-sensor.status := unsafe
event none

RESET-SYSTEM-BEH instance-of behavior
true

fuel-sensor.status := safe &
combustion-sensor.status := safe &
master-switch.status := on
event none

SYSTEM-TURNED-OFF-BEH instance-of behavior
true

fuel-sensor.status := safe £
combustion-sensor.status := safe &
master-switch.status := off
event none

TABLE1 instance-of relation-table

%'/FROM-OBJECT ASSOCIATION TO-OBJECT

%% STATE-EVENT RELATIONSHIPS

OFF, MASTER-SWITCH-ON, IDLE;
IDLE, MOTOR-TURNED-ON, MOTOR-ON;
MOTOR-ON, OIL-IGNITED, WATER-HEATING;
WATER-HEATING, WATER-VALVE-OPENED, RUNNING;
RUNNING, DONE-HEATING-WATER, SHUTDOWN;
SHUTDOWN, MOTOR-TURNED-OFF, WAITSMINUTES;
WAITSMINUTES, DONE-WAITING, IDLE;
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IDLE, MASTER-SWITCH-OFF, OFF;
MOTOR-ON, MASTER-SWITCH-OFF, OFF;
WATER-HEATING, MASTER-SWITCH-OFF, SHUTDOWN;
WATER-HEATING, ABNORMAL-FUEL, SHUTDOWN;
WATER-HEATING, ABNORMAL-COMBUSTION, SHUTDOWN;
RUNNING, MASTER-SWITCH-OFF, SHUTDOWN;
RUNNING, ABNORMAL-FUEL, SHUTDOWN;
RUNNING, ABNORMAL-COMBUSTION, SHUTDOWN;
SHUTDOWN, ABNORMAL-SHUTDOWN, HOLD;
HOLD, SYSTEM-IS-RESET, IDLE;
HOLD, SYSTEM-IS-OFF, OFF;

%% STATE- EXTERNAL-EVENT RELATIONSHIPS

OUTSIDE, SWITCH-TURNED-ON, OFF;
OUTSIDE, AIR-TEMP-BELOW-PRESET, IDLE;
OUTSIDE, ADEQUATE-MOTOR-SPEED, MOTOR-ON;
OUTSIDE, WATER-TEMP-ABOVE-PRESET, WATER-HEATING;
OUTSIDE, AIR-TEMP-ABOVE-PRESET, RUNNING;
OUTSIDE, FIVE-SEC-TIMER-EXPIRES, SHUTDOWN;
OUTSIDE, FIVE-MIN-TIMER-EXPIRES, WAITSMINUTES;
OUTSIDE, SWITCH-TURNED-OFF, IDLE;
OUTSIDE, SWITCH-TURNED-OFF, MOTOR-ON;
OUTSIDE, SWITCH-TURNED-OFF, WATER-HEATING;
OUTSIDE, SWITCH-TURNED-OFF, RUNNING;
OUTSIDE, UNSAFE-COMBUSTION-SENSOR, WATER-HEATING;
OUTSIDE, UNSAFE-COMBUSTION-SENSOR, RUNNING;
OUTSIDE, UNSAFE-FUEL-SENSOR, WATER-HEATING;
OUTSIDE, UNSAFE-FUEL-SENSOR, RUNNING;
OUTSIDE, RESET-SYSTEM, HOLD;
OUTSIDE, SYSTEM-TURNED-OFF, HOLD;

U ENTITY-RELATIONSHIPS

CONTROLLER, ACTIVATES, MOTOR;
CONTROLLER, MONITORS, MOTOR;
CONTROLLER, MONITORS, THERMOSTAT;
CONTROLLER, CONTROLS-FLOW, VALVE;
MASTER-SWITCH, SWITCHES, CONTROLLER;
FUEL-SENSOR, SIGNALS, CONTROLLER;
COMBUSTION-SENSOR, SIGNALS, CONTROLLER;

%% EVENT-BEHAVIOR-RELATIONSHIPS

%% these realtion-table entries were initially missing, causing
%% the specification to terminate because external-events could not
YX be associated with their behaviors.

SWITCH-TURNED-ON, ICO, SWITCH-TURNED-ON-BEH;
AIR-TEMP-BELOW-PRESET, ICO, AIR-TEMP-BELOW-PRESET-BEH;
ADEQUATE-MOTOR-SPEED, ICO, ADEQUATE-MOTOR-SPEED-BEH;
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WATER-TEMP-ABOVE-PRESET, Ica, WATER-TEMP-ABOVE-PRESET-BEH;
AIR-TEMP-ABOVE-PRESET, ICO, AIR-TEMP-ABOVE-PRESET-BEE;
FIVE-SEC-TIMER-EXPIRES, ICO, FIVE-SEC-TIMER-EXPIRES-BEE;
FIVE-MII-TIMER-EXPIRES, ICO, FIVE-MIN-TIMER-EXPIRES-BEE;
SWITCH-TURNED-OFF, ICO, SWITCH-TURNED-OFF-BEE;
UNSAFE-COMBUSTION-SENSOR, ICO, UISAFE-COMBUSTIOI-SENSOR-BEE;
UNSAFE-FUEL-SENSOR, ICO, UNSAFE-FUEL-SENSOR-BEE;
RESET-SYSTEM, ICO, RESET-SYSTEM-BEE;
SYSTEM-TURNED-OFF, ICO, SYSTEM-TURNED-OFF-BEE;

U% STATE-BEEAVIOR RELATIONSHIPS

OFF, ICO, FURNACE-OFF
IDLE, Ica, FURNACE-IDLE;
MOTOR-ON, ICO, FURNACE-MOTOR-ON;
WATER-HEATING, ICO, FURNACE-WATER-HEATING;
RUNNING, ICO, FURNACE-RUNNING;
SHUTDOWN, ICO, FURNACE-SHUTTING-DOWN;
WAITSMINUTES, ICO, FURNACE-WAITING;
HOLD, ICO, FURNACE-ABNORMAL
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Captain Mary Margaret Boom, nee Zelasko, was born on 4 May 1955 in Buffalo, New York

and graduated from Archbishop Carroll High School in Buffalo in 1973. Mary enlisted in the

Air Force in 1973, and following basic training attended technical school for avionics maintenance

(AFSC 328X4) at Keesler AFB, Mississippi. Upon completion of training, she was assigned to K. I.

Sawyer AFB, Michigan where she maintained B-52Gs and KC-135As. Subsequent assignments took

her to Kunsan AFB, Korea and George AFB, California to work on F-4s. In 1977, she retrained in

general accounting (AFSC 672X1) at Sheppard AFB, Texas. She was transferred to Sembach AFB,

Germany in 1979 and began attending classes through the University of Maryland. In 1983, Mary

transferred to University of Oklahoma in Norman, Oklahoma where she completed her Bachelor

of Science in Electrical Engineering (BSEE) in August of 1986. After graduation, TSgt Boom

attended Officer Training School (OTS) at Lackland AFB, Texas and received her commission on

19 November 1986. She was then sent to Keesler AFB, Mississippi to attend the communications-

computer course for 492X officers. After completion, she was assigned to Offutt AFB, Nebraska.

While assigned there, Mary maintained interface software and provided program management and

system support for the Strategic Air Command Digital Network (SACDIN). She also served as an

Software Engineering Instructor for SAC programmers. In May 1991, Captain Boom entered the

Air Force Institute of Technology at Wright-Patterson AFB, Ohio, in pursuit of a Master of Science

degree in Computer Engineering.

Permanent address: 89 Currier Street
Buffalo, New York 14212
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Captain Bradley Mallare was born on 22 October 1966 in Jamestown, New York. Upon

graduation from Jamestown High School in June 1984, he received a four year Air Force ROTC

scholarship to pursue an engineering degree. In May 1988, Brad graduated with honors from

Clarkson University, Potsdam, New York, with a Bachelor of Science degree in Electrical and

Computer Engineering. He was honored as a Distinguished Graduate (DG) from ROTC and was

awarded a Regular Commission into the Air Force upon graduation. His first assignment was to

the Electronics Systems Division (ESD) at Hanscom AFB, MA where he served as the Software

Testing Engineer for the Command Center Processing and Display System - Replacement (CCPDS-

R) Program. In May 1991, Capt Mallare entered the Air Force Institute of Technology (AFIT)

at Wright-Patterson AFB, Ohio, to pursue a Master of Science degree in Computer Engineering.

Upon graduation in December 1992, Mallare will be assigned to the Wright Laboratories at Wright-

Patterson AFB.

Permanent address: 93 Falconer Street

Jamestown, New York 14701
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